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Ricci Flow on Complete Noncompact Manifolds

Abstract

In this thesis, we will discuss some results which are related to Ricci flow on

a complete noncompact manifold with possibly unbounded curvature.

In the first part, we will discuss the result on the short time existence of Ricci
h-flow on a complete noncompact manifold M by M. Simon [16]. The result is
as follows: if the metric gy is 1 + €(n) fair to the metric A which has bounded
curvature, then Ricci h-flow exists on M with initial metric go. In order to ob-
tain the result, one first consider a compact domain D and obtain a solution to
the initial and boundary value problem. After some derivation of local a priori
estimates for its derivatives. a solution of the Ricci h-flow on the whole manifold

will be constructed.

In the second part, we will study the result on the short time existence of
Ricci flow on a complete noncompact manifold with positive complex sectional
curvature by E. Cabezas-Rivas and B. Wilking [10]. By considering the doubling
of convex sets obtained in the Cheeger-Gromoll exhaustion and solving the initial
value problem for the Ricci flow on these closed manifolds, a sequence of closed
Ricci flows on a fixed time interval with positive complex sectional curvature is
obtained. A curvature estimate around the soul point is then derived. This en-

ables one to obtain a limit solution on the whole manifold.
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Chapter 1

Introduction

In this thesis, we consider a evolution equation to deform the metric on any

n-dimensional Riemannian manifold (M, go):

%giﬁ = 2 (1.1)
9(0) = 9,
where R;; is the Ricci curvature of M.

In [26], Hamilton introduced this geometric flow (called Ricci flow) and proved
that every compact three manifold with positive Ricci curvature admitting a met-
ric of constant positive sectional curvature. The Ricci flow has then been proved
to be very useful in the research of differential geometry. The first important
thing which we have to concern is its short time existence. In the case where
M is a compact Riemannian manifold, Hamilton [26] proved that for any C*
initial metric gg, Ricci flow equation has a unique solution for a short time us-
ing Nash-Moser inverse function theorem. Later on, Dennis DeTurck [9] gave a
elegant proof on the existence and uniqueness of Ricci flow on closed manifold in
which he modified the Ricci flow into a nonlinear parabolic equation. Therefore
the short time existence problem is solved in the compact case. But the complete
noncompact case is more difficult.

In [9], in stead of considering the Ricci flow equation, DeTurck considered the

6
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Ricci-Deturck flow which is a strictly parabolic system. The Ricci-Deturck flow

is the solution of the following evolution equation:
%gzj = 2R, +'V,W;, +' V,;W,, (12)
9(0) = go,
where W = W(g) is defined by W; = g;xg"(“T'y, =" I'}) and h is a fixed back-
ground metric on M. After solving the Ricci-Deturck flow on M, he pulled it
back through a diffeomorphism and obtain a Ricci flow on M.

Following the idea of DeTurck, Shi [32] considered open manifold (complete
noncompact) (M, go) with bounded curvature. He evolved (M, go) by the same
evolution equation as in (1.2) with h = go. He showed that the Ricci-DeTurck
flow exists on M which can be pulled back to a Ricci flow on M. Thus, the short
time existence problem is solved if (M, g) has bounded curvature.

Due to the work by Shi, we attempt to remove any restriction on curvature
bounds for open manifolds. For non-compact 2-manifolds (possibly incomplete
and with unbounded curvature), this was settled by Giesen and Topping in [11],
using the idea from [22]. But for n > 3, it is difficult to imagine how to construct
a solution of Ricci flow. And it seems to be necessary to requre more informations
about the curvature.

In chapter 2, we will present the result by M. Simon in [16] in which he
considered (M, go) with unbounded curvature but gy is C%-close to a background

metric A with bounded curvature in the following sense.

Definition 1.0.1. Let M be a complete manifold and g a C° metric , and § €
[1,400), a given constant. A metric h is said to be §-fair to g, if h is C* and

there exists a constant ko such that

SEJ\B |Riem(h)(x)|n = ko < 400, (1.3)
and
Lh) < o(p) < oh(p), Vpe M. (1.4)

d
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He evolved (M, gy) by the same equation in (1.2) with h being the fixed
background metric. He called it the Ricci h-flow. He proved that if the initial
metric go is 1 4§ fair to h for sufficiently small §(n) > 0, then the Ricci h-flow
exists on M for short time ¢ € [0,7(n, ko)]. Later on, he proved that the Ricci
h-flow can be pulled back to a Ricci flow on R™ with h being the flat metric, see
[19].

In chapter 3, we will discuss the result by B. Wilking and E. Cabezas-Rivas in
[10] in which they considered open manifolds with nonnegative complex sectional
curvature.

Here, we explain the meaning of complex sectional curvature on (M, g). Con-
sider its complexified tangent bundle T7°M = TM ® C, we extend the curvature
tensor Rm and its metric g at p to C—multilinear maps. The complex sectional

curvature of a 2-dimensional complex subspace o of T;CM is defined by
K (o) = Rm(u,v,u,v),

where u and v form an unitary basis for 0. And we say that M has nonnegative
complex sectional curvature if K C>0.

In [10], B. Wilking and E. Cabezas-Rivas constructed a Ricci flow solution on
open manifold (M, g) with K§ > 0 without any assumptions on the curvature
upper bounds. The result is based on the work of Cheeger, Gromoll in [13]. They
proved that for open manifolds with K, > 0, it admits an exhaustion by convex
set (). It enables us to construct a Ricci flow with nonnegative complex sectional
curvature on the closed manifold formed by gluing two copies of C) along the
common boundary and whose initial metric is the natural singular metric on the

double. By passing to limit, the following theorem can be obtained.

Theorem 1.0.2. Let (M™, g) be an open manifold with nonnegative (and possibly
unbounded) complex sectional curvature. Then there exists a constant T depend-
ing on n and g such that (1.1) has a smooth solution on the interval [0, T], with

9(0) = g and with g(t) having nonnegative complex sectional curvature.
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B. Wilking and E. Cabezas-Rivas also showed that the maximal existence

time of Ricci flow can be estimated from below by the supremum of volume of

balls in (M, g).

Corollary 1.0.3. In each dimension n, there is a universal constant e(n) > 0
such that for each complete manifold (M™, g) with K;F > 0, the following holds:

If we put

l,(B
T:e(n)-sup{W:peM,r>0}E(O,oo],

then any complete mazimal solution of Ricci flow (M, g(t)),t € [0,T) with K;C(t) >
0 and g(0) = g satisfies T < T.



Chapter 2

h Ricci flow

2.1 Introduction to h-Ricci flow

In this chapter, we study the Ricci h-flow which is a variant of the Ricci-
Deturck flow. For a Riemannian manifold (M, go) with a fixed background metric
h, we define the h-flow with initial data g by

9
ot
g(0) = go,

—2R;; +' V,W; + V,; W,
J J J (2.1)

where the time dependent 1-form W = W (g(t)) is defined by
Wj = gjrg"(Tp, — "T},)-

Here, R;; is the Ricci curvature of ¢(t) and 'V stands for the connection induced
by the metric g(t). T%, and "I"’; are the Christoffel symbols of the metrics g(t)
and h respectively.

Throughout this chapter, we will denote Rm and V as the curvature tensor

of h and the connection induced by the metric h respectively.

10
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Lemma 2.1.1. In local coordinate, h-flow solves the evolution equation
5% = 9"V aV59i — 9 9iph" Rjogs — 97 93ph" Riags

+ %gaﬁgm (VigpaVigas + 2Va9ipVagis — 2Va0ipV 50ig

—2V0paV 89iq — 2VigpaV 595)-

where V is the connection induced by the metric h, R = Riem(h). In particular,

the evolution equation is a strictly parabolic system.
Proof. See Lemma 2.1 in [32]. O

We now show the relations between Ricci flow and the h-flow. Suppose
g(t),t € [0,T] solves h-flow, we consider a l-parameter family of maps ¢;(z) :
M — M by the equation

#0p) = —W(en(p),t)
QSO = Zda
If the equation (2.2) has a smooth solution ¢, on M x [0,7] and remains dif-

(2.2)

feomorphism on [0,7]. One can observe that the family of metrics g(t) = ¢;g(¢)

is a solution to the Ricci flow. We compute as follows.

9 (61000)) = 2 ucol6% gt +5)

= 61 9(0) + ool 9(0)

= i (~2Rieg(t) + Luripg (1) + o lomol(6;™ 0 6112)'6 (1)
= ~2Ric(619(0)) + 61 (Lwig()) — Loy Bho)

— —2Ric(6}9(t)).

where Ly g refers to the Lie derivative of metric g in the direction of X.
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In this chapter, we will prove the short time existence of h-flow in the case
that gy is smooth and (1 + €)-fair to the metric h with e sufficiently small. We

define the fairness as follows.

Definition 2.1.2. Let M be a complete manifold and g a C° metric , and § €
[1,400), a given constant. A metric h is said to be §-fair to g, if h is C* and

there exists a constant ko such that

sup |Riem(h)(z)|p, = ko < 400, (2.3)
xeM
and
1
51p) < g(p) < Oh(p), Vpe M. (2.4)

Remark : By the result of Shi, Theorem 1.1 in [32], if h¢ is a smooth Riemannian
metric with bounded curvature kg, then there exists a constant 7' = T'(n, ko) > 0
such that the Ricci flow h(t) with initial metric hg exists on M for 0 <t < T.
It satisfies the following estimates. For each m € N, there exists constants ¢, =
c(n,m, ko) > 0 such that

sup |VmR,~jkl(m,t)|2 < —, 0<t<T.
xeM

From the Ricci flow equation |,

%h(t) = —2Ric(h(t)), 0<t<T,

It follows that
0

|§hij|2 <A4|R;|? <4n’cy, 0<t<T,

This implies

e PV R(2,0) < hyj(x,t) < VOl hyi(x,0), Yo € M, t € [0,T].
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For all € > 0, we can find tg = to(€,n, ko) > 0 small enough such that the new
metric h'(z) = h(z,to) satisfies

1

T 6ho(x) < h'(x) <(1+e)ho(z), VreM

and

sup |"' V™ Riem (1) (z)|2, < j—g < +00.
zeM 0

So, if h is (1 4 §)-fair to a metric g, then we can replace h by another smooth
metric A’ which is (1 + 26) fair to g ,and

sup | V™ Riem(h')(z)[% = k; < 400,

zeM

So we can assume that h always fulfills such estimates.

2.2 Evolution equations of derivatives of g

In this section, we state the evolution equations for the derivatives of the

h-flow.

Lemma 2.2.1. Suppose g(t) is a solution of h-flow and h is 1+ €(n) fair to g(t),

then in local coordinate, we have

0 —m — e o o

2V 90 =0V VsV g0+ Y. Vg« VgV Riem(h)
it+jt+k=msi,5k<m

+ Z vig_l * ng_l * V

i+j+k+Hl=m;i,j,k,l<m

I+1

sV g, YmeN

where here T xS (T and S are tensors) refers to some trace with respect to the

metric h which results in a tensor of the appropriate type.

Proof. We prove it by induction on m.
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When m = 1, differentiate the evolution equation in Lemma (2.1.1).

6_ X7/, 087 7 X7 [ ¥5) o D
@mb =V (9*"VaVis9a) — V(9 gaph Riaqs + 9°° grph? Raags)

+V %ga'g 9""(VagpaV9as + 2V a9V 9ap — 2VagpV 9aq = 4VagpaV 595q)
= "'V VoV sgar + V9*'ViVsga + V(g™ * g% h* Rm)

+ V(g g™ % Vg Vyg)
= " VVaVsgas + Vg %V g+ Vg Lk g« Rm+ g '« Vg* Rm

Lol g« VRm 4+ g % Vg % Vg Vgt g lxg  xVogxVg.

By differentiating the equation g“g;;, = Ji, we have Vgt = —¢P gkqﬁ-gpq. It

gives

s eivavaiva -1 ol T P a1 TP

anab:g VVaVggar + Vg xgx Rm+g  *Vgx Rm+g  *g* VRm
+97 Vg 4 Vg Vgt gl e g« Vg« Vg,

By using Ricci identity on the first term, one can deduce that
9’V oV 590 = §°VoV Vg + g Rm * Vg
= g*VaVsVga+ g ' *V(Rm*g)+ g '« Rm Vg
= gaﬁvﬁﬁgab +¢ ' '«Vgx Rm+¢g'xgxVRm
So, we have

0 — o _ _ _ _ .
EVgab = gaBVaVBVgab + [Vg_l xgx Rm+ ¢ '«Vgx Rm+ ¢ '*gx VRm}

+ [9_1 xVg 1« VgxVg+gleg Vg *79] :
The case of m =1 is true. Suppose it is true for m = p. That is
0= = = = i =i ke
avpgab =gV V5V gap + Z Vg« VgV Rm
i+j+k=p;i,j,k<p
+ Z 7ig_1 *ng_l « V

i+j+k+l=p;i,j,k,I<p

k+l =i+l
9

*V g
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Differentiate the above equation. We obtain

0 — _ _ _
_vcvpgab = vc(gaﬁvavﬁvpgab) + vc

5 S Vi« VgV RBm

t+j+k=p,i,5,k<p

=i 1 =i -1 =k+l =i+l
g Vg «Vg «xV g¢gxV g

i+j+k+l=p,i,5,k,l<p

- vcgaﬁ vocvﬁvpgab + gaﬁvcvavﬁvpgab

+ V.

+ Z Vig_l *ng*ka_m
Li+j+k=p+1,i,5,k<p+1
+ > Vg« Vgt =V gx Vmg] .

Li+j+k+l=p+1;i,5,k,l<p+1

Apply Ricci identity again on the second term, we obtain

GV VoV sV g = §°°V oV 5V N gap + Rim % Vpﬂg +VERm«V'y.

Together with the fact that V g/* = —¢’? gkqvcgpq, we get the desired equation.

0 = = = — — e
&v”“gab = ga5VQV5vp+lgab + Z Vg ' «Vgx V' 'Rm
i+j+k=p+1,i,5,k<p+1
+ > Vg« Vg sV gV
i+j+k+l=p+13i,5,k,I<p+1
By mathematical induction, result follows. O

Thus, we have the evolution equation of the norm of derivatives of g(t).

Lemma 2.2.2. Suppose g(t) is a solution of h-flow and g(t) is 1 + €(n) fair to
h, then in local coordinate, we have
8 —m = — |—Mm _ =M = =m
5V 9P < g7V VIV g? = 26°7(VaV g, VsV )
+e(mon,h) Y VgV gl[V"gl
i+j<m;i,j<m

=i =i =k =l =m
+c(m,n, h) > VgV gl[V gl V glIV"g]

i+j+k+Hl=m+2;i,5,kI<m+1
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Here, the norm of tensor is with respect to the metric h.

Proof.

0 aBf= = =M 0 s = M —m B/ =M — —m
(5~ AV g|2:<(a—g NNV g, V" g) —2¢*°(V V"9, V5V g),

Substitute the result of Lemma (2.2.1) into the above equation, together with the

fairness assumption, we obtain the result. O

2.3 Zero order estimate of h-flow.

Before we prove the existence of Dirichlet solution, we first need some a priori
estimate of the solution. In this section, we will give zero estimate on the Dirichlet

solution.

Lemma 2.3.1. Let D be a compact region in M. Let gy be a C*(D) metric and

h, a metric on M which satisfies

S h
D=1
Let g(t), t € [0,T] be a C*(D x [0,T]) solution to the h-flow with Dirichlet
boundary conditions glaop(-,t) = go, g(0) = go. Then for every o > 0, there exists

an S = S(n, ko, 0,0) > 0 such that

o) > ¢ " wepnTn, 9]

14+0)(1+0)
Proof. We define a function ¢ : M x [0,7] = R by ¢(z,t) = g7 hyyip..g"m by, i,
(m is a integer to be chosen). At a fixed point p € M, we may always find a

local coordinates around p, such that, h;;(p) = d;; and g;; = 0;;\i(p). In this local
"\ 1
dinat h t) = —.
coordinate, we have ¢(z,t) Zz:; 0

Noted that it satisfies

sup oz, t) <n(l+)™.
(z,t)eDx{0}UOD x[0,T]
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9 i1j 0 i imj
agb(l" t) =g o hj1i2"'hjk—1ik(§g kjk)hjkik+1"'g m]mhjmh

=g hjliz - 'hjk—lik (_glkqgmk agpq)hjkik+1 : "hjmh :

In our preferred coordinate,

9 (z,t) = .m0
ot L g
m b= = 2)\z—
= _/\m+1 {g ﬁvavﬁgii - )\_aRioeia
1 __ __ __ _ __ __
+ I\ [( igpoé)Q + 2vagipvpgia - 2(vagip>2 - 4vigpavagip]}
afp
M —= — 2m —
= VW VaVagi + )\m—AaRmm
m — — — — — —
 oym+1 [(Vigpa)2 +2VagipVpGia — 2<Vagip)2 - 4vigpavagip]~
2 VAR VO

v/6¢ = giljl e (vggikjk ) .. 'hjmi1 .

gaﬁvavg(ﬁ

= g“ﬁg“jl...(Vggikjk)...(Vﬁg“jl)...hjmil + gaﬂgiljl--~(vavﬁgiwk)...hjmil
m—2

= %(Vagij)Q(Z M“,lk )+ Xﬂ Aavﬁag“’
k=0 "1 J )
m—2

- A%(v“gijﬂkzo A:“’l’u?) " A?ﬁua (979N aVagp 297 9"9"V a9V agir)
m—2 1 o -

Vavagii (vagip)Q] .

_ T g2 —_
A Vel I ) ey

_l’_ -
. D%
k=0 "
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(aﬁ - gaﬁvavﬂ)gb

—m 7 Sl ~ — —_— —
== 2)\m—|—1)\ )\ [(Vigpa>2 + 2Vagipvpgia - 2<vagip)2 — 4vigpavagip]
7 a’\p
m—2
_ Mg iy 1 2m oo
)\a (vag ) (Z )\Zm727k)\§3) + )\,zm)\a Yo% TeY )\Zm—i_l—)\a)\p (Vagzp) )

k=0

m 2 ~ - 7 2
< _m[(vigpa) +2VagipVigia = 2(Vagip)

- 4vigpavagip + 4<vagip)2]

—Fiaioz
HPYOW

S _ﬁ[(vigpa)2 + 2vagipvpgia - 4vigpavagip + 2(vagip)2]
[ a’ip
kao
YOW
<__m
=200,

[(vigpa)2 + 2vagipvpgia - 2vigpavagip

2mk:0
YOW

- Qvigpavpgm + (vagip)2 + (vpgia)Q] +

2ml€0 m . o o
SN A, e Y ede Vgia)?
< Cottm

where the constant C' = C(m, ko, n) = 2mnky.
We now define f: M x [0,7] - R by f = ¢%,

—1—-m

1
Of =——¢"m 0ip
m
—m— m+1

e 1 .. 4 — 1-2m s —  —
gIViVf = ——glTm ViV + ——¢7m g7VigV;o

m2

(0 — Vi) f

1 —1-m P — m-+1 —i1-2m = =
:—Eﬁb " (@—ngivjﬁﬁ'?éﬁ mg7VipV;¢

C 1 R —
Z —E -+ (m -+ 1)¢EgZJV1fV]f

By parabolic maximum principle, this implies that V(z,t) € D x [0,T]

Ct _
f+—> inf
m Dx{0}uoDx[0,T]

1

2 n 1 1 2 1
SUpr{o}uan[o,T}(zi:1 )\_)m nm (14 6)
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And hence, we have on D x [0, 7]

It implies that, for any i € {1,2,...n}, (z,t) € D x [0,T7,

n (14 6)
For any given o > 0, choose m € N large enough so that (1 + %) > nw and
140

h k 0) = th h
choose S(n, ko, 0,0) k(T (1T 72) > 0, then we have

V(z,t) € D x[0,5].

We wish to obtain bounds from above for g(¢) in terms of h.

Lemma 2.3.2. There ezists a constant € = é(n) > 0 such that the followings
hold:

Let D be a compact region in M, and gy be a C*°(D) metric and h a metric on M
which satisfies h < go < (14+0)h (0 <€). Let g(t), t € [0,T] be a C°(D x [0,T))
solution to the h-flow with Dirichlet boundary conditions glsop(-,t) = go(-), g(0) =
go- Then there exists S = S(n,ko,0) > 0 such that

g(t) < (1+26)h,Vt € [0,T] N[0, S5].

Proof. Let 1 > é = ¢é(n) > 0 be a constant such that

1426 - log 2n
1496 1168n5’

log Vo < €. (2.5)

Choose m € N such that

log 2n <m< 2log 2n
log(1+2) —log(1+4d) =~ log(1+2d) —log(1+6)

(2.6)
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1
Let a(m) = — . By the previous theorem, there exists an S = S(n, ko, a) > 0
m
such that
h
g(t) > 1wt e [0,7]n10, ).

T 14«
We define a function G : M x [0,T] — R by G = h'91g, ;,..h'mImg, ..
From the fact that h is 1 + ¢ fair to gg, we can see that

n < G(z,0) <n(l+5)™

1
(14+0)m—5G

And for (1+6)™ — =G > 0, we define F =

Clearly, we know that

(146)" — %G(I, 0) > L(1+ )™, (2.7)

(NN

and hence F(z,0) < 0o , is well defined at ¢t = 0.

Since D is compact, and g(z,t) is a priori smooth, there is 77 € [0,7] N [0, 5],
such that F(z,t) is well defined for all ¢ € [0,7"), and if supp, o) F(2,1) <
oo, then [0,7"] = [0,7] N [0,S]. Since F' is well defined on [0,7”"), we see that
(146)™ — 5=G(x,t) > 0 for all t € [0,7"). In our preferred coordinate, it implies

N < (2n)w (1+6),Vi € {1,2,..n},¥t € [0,T").

Now we evaluate the evolution equation for F.

0 i1 i 0 ira1d
EG = h" gj1i2"'h m(EgjliHJh l+1Jl+1_'_gij.1
0
= )\mil_ i
ma; 8tg
= m)‘?kl{gaﬁvavﬁgii - )\—Riam
1

[(vigpa)Q + 2vagipvpgia - 2<vagip)2 - 4vigpavagip]}~
20\
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VG = "7 gjriye (Vs Giings)---Gijmin-
gaﬁvang

= 7" gjui, (97 vavﬁgﬁm)m%mn + 9 W gjrig o (Vabininss)-(VGiuin 1)+ G

= N GV ag) + (Vo) z AP RAR),

AT Ve

ot
— 2\ —
= m)\lmfl{gaﬁvavﬁgii - )\_Riaia
1 o L _ .
* 2D\ [(Vigpa)® + 2V agipVpia — 2(Vagip)” — 4Vigpav&gip]}
a\p
m—2
Py — m — "2
mA 9"V o Vsgi) — A_(Vagij)Z(Z ATTETEAD)
o k=0
2mA — m = = m—9—
= — N —— Rinia — )\_(vagij)2<z /\z ? kAf)
o & k=0
m m-l 2 ~ - < 2 v \v4
+ ﬁ[(vz‘gpa) +2Va0ipVpGia — Q(Vagip) - 4vi9pavagip]‘
afp
omk m m—2 m—1
< O 0T )2 m—2-k \k L Y .0, V. g 2(V; 2
=T G A (vagz]) (kZ:O )\@ >\]) + 2)\a)\p [3v0&glpvpgw‘ + (v’gap) ]

Using the fact that |

1
1+«

<M< @n)w(1+06), on [0,T).
We conclude that
0 o
0B
(615 V.V3)G

< 2mnko(1+ )G +m(1 + a)2[Vgl? [6n(1 + a)(1 + &)™ m 1

C(2n)Ym(1+6)(1 + a)m]

By using (2.5), (2.6), it implies that

1 1+2
—log(1+9 1
31081 +0) < log 7775
log 2n
m 4 5
73n(1+6)™ < 73n(16n") = 1168n w <m

08 15
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Thus, we conclude that

1 1
14 6n(2n)= (1 + ﬁ)m+1(1 +6)™ <14 6n(2)(3)(2)(1+0)™ < 73(1 +0)™ < m.
m
6n(1+ a)(1+6)™ < m 1
e @2n) 7 (1 +0)(1 + o)™
So we get
(% — §*PV,V3)G < 2mnko(1 + a)G.
= = F? 0 - = F = =
— _ 0B — - (= _ 0P _ 0B
(875 VoV F o (at V.V3)G o V3GV F
) B
m 2 2
< 2mnky(1+ a)(1 4 0)"F* — TN (VoG)
< 2mnko(1 + a)(1+6)"F2.
By parabolic maximum principle and (2.7) , we obtain
a
F(.,t) < ——,Vt € [0,T"). 2.8
(f) < Ve 0 T) (28)
where a = sup F(z,0), b = 2mnko(1 + a)(1 + §)"a.
xzeD
1
Without loss of generality, we assume that S < oA which implies that bt <
1
3 Vt € [0,7"). By mean of (2.7), we obtain
F(-t) < A vt € [0,71")
Y — (1 + 6)m7 Y 7

And hence T" = min(S, T).
Combining with (2.6), we get

A < (2n)m(146) < (1428), Vtel0,T]n]o,S).

Combing the above two lemmas, we can conclude the following theorem.
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Theorem 2.3.3. There exists a é(n) > 0 such that the followings hold:
Let D be a compact region in M, and gy be a C*(D) metric and h, a metric on

1
M which satisfies 535

be a C*(D x [0,T]) smooth solution to h flow with Dirichlet boundary conditions

h < go < (1+0)h where 6(§ +2) < €. Let g(t),t € [0,T]

glop(-,t) = go(-), 9(0) = go. Then there exists S = S(d,n, ko) such that

1
(1+39)

h<g(t) < (1+38)h, Vtelo,T]N][0,9].

Proof. First note that if g(¢) is a solution to h-flow, then (1 + 9)g(

. i 5) istalso
a solution to h-flow, with initial data (1 4+ &)go. Let g(t) = (1 + 6)9(1——1-5)’
go = §(0) = (1 + &) g satisfies h < §(0) < (1 + §)%h. From the Lemma 2.3.2, we

may find an S = S(n, ko, d) > 0 so that
G(t) < (1 +46 +26%)h, Vte[0,(1+8)S]NI0, (14 8)T).

which will imply

1 4 46 + 262

<
9t < =75

h<(1+30)h, Vtel0,8]n]0,T].

By Lemma 2.3.1, we can find S = S(n, ko, d) > 0 such that

1
(1+30)

h<g(t) < (1+30)h, Vtel0,S]N][0,T].

2.4 A priori interior estimates for the gradient
and higher derivatives of g.

In order to prove the existence of Dirichlet solutions on arbitrary compact set
D, we need some a priori estimate on the derivatives of g(t). After that, we wish
to let D go to infinity on M to get a limit solution on M. To do this, we need

to control g;;(z,t) locally. In this section, we will give some a priori estimates on
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the gradient and higher derivatives of g(t).

Lemma 2.4.1. Let g(t),t € [0,S] be a C*(D x [0, S]) solution to the h flow with
Dirichlet boundary conditions glap(-,t) = go(:),g(0) = go, for some h which is
1+ €(n) fair to g(t), Vt € [0, 5] (e(n) to be specified in the proof below). Then

sup [Vg(z,t)|* < e(n, h, D, go|p), Vt € [0,5].

zeD

The norm s with respect to the background metric h.

Proof. Let ¢ : M x [0, S] — R by,
G(2,t) = gjri N2 iy B2 g i I

1
m = m(n) is a integer to be chosen. Choose ¢(n) = )
m(n
We may choose a coordinates at point p such that h;;(p) = 0,5, g(p)ij = Ni(p,t)di;.
In this coordinate, ¢(z,t) = A" +...A". Since (1 —e¢)h(z) < g(z,t) < (1+¢€)h(z),

we have

l—e< N <1l+¢ V(z,t)eMx][0,S5].

Compute the evolution equation of ¢(z,t) as before, we will obtain the following

equation.
9 o m o— w2 2mk
(g7 —9"VaVia)o < —3-(VaguQ_ N N) + =0
o k=0 “
mA" N 2
+ SN 3Va9ipVgia + 2(Vigap)’]
< anko(l +am
3m(l+ e m(m =11 -e"?] <
(Lt ™l = 0= o o
(1—¢) lL+e

2
< 12mnkg — %]vg\Q.

Now define 1 : M x [0,S] — R by @ = (¢ +a)|Vg|?, a(n) > 0 is a constant to be

chosen.
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By Lemma (2.2.2), we have

(% — gV V) |Vyg|* = —29*(VaVg,VVg) + g7« Rm = Vg x Vg

+VRmx*g+xg ' «Vg+g'lxg ' *VgxVgxVVyg
+g kg txgxVgxVg* Rm
< —29""(VaVyg,VsVg) + C|Vg[’[VVy|

+C|Vgl* + C|Vg|* + C|Vy| ( C=C(n, ko, k1,€) )
< -[V'gP + CIVgF ¥yl

+C|Vyg|* +CVg|* + C|Vy|. (provided €(n) < 1.)

By using Young’s inequality, we can obtain

0 = = \ = 1 —2 _
(5~ 9’V V;)|Vgl* < —5IV g’ + Co|Vg|* + Cs.

Where Cy, C3 depends on n, kg, k1 only.

L — PR
= (@+a)(5; = 9"'VaVa)[Val* + [Vol*(5; = 6°'VaVs)é — 207Vi6 V|V g|*

1 — — — m? — S S
< (¢+ a)(—§|vzg\2 + G| Vgl + C3) + [Vg[ (Ch — g\VQP) —2¢g“V,9V;|Vg|

< _9ta

2
— — — m* — e
< - !V29l2+Cz(¢+a)!Vg\4+03(¢+a)+01!Vg\2—§|Vg!4—2g”vi¢VjIV9!2

4m)\21’1

—2¢g"V,¢V;|Vyg|* = — ' Vige(V;V g,V g)
< Cym(1+ €)™ !
< -
< 20,m|V gV g|?

Vogl[Vgl>  (Ci=Cun))

—_

2m*(Cy)*[Vgl*
a—+ ¢

< S(a+ o) Vgl +

m*(Cy)? _ m?

W 3 And also choose m = m(n)

Choose a(n) large enough so that
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large so that Cy(¢ + a) < % < % N( ) < m. Then we can deduce that
é(n
0 e o m? = 4 = 2
(a — g VaVp)h < —3—2W9| + C1IVg|™ + Cs(n, ko, k1)

1
< —51/)2 + co(n, ko, k1)

< ¢ (2.9)

From the maximum principle we obtain that

sup (¢ — cot) < sup Y (2.10)
Dx[0,5] 0D x[0,S]uDx{0}

Applying Lemma 3.1, VI, §3 in [18] to the evolution equation of h-flow, we get
sup |Vyg| < ¢(n,h,0D), in view of the a priori parabolicity. Together with
0D x|0,5]
(2.10), the result follows. O
Furthermore, we can also estimate the derivatives of g(x,t), suppyjo 7 V" g(z,1)|,

on compact set D by a constant depending only on m,n, h and go|p. We sum-

marize in the following theorem.

Lemma 2.4.2. Let g(t),t € [0,5] be a C>°(D x [0, S]) solution to the h flow, for
some h which is 1+ €(n) fair to g(t), ¥t € [0,5] (e(n) to be specified in the proof
of Lemma 2.4.1) with Dirichlet boundary conditions glop(-,t) = go(+), 9(0) = go.
Then

sup |vmg(yc,zf)|2 < C(myn,h,D,go|lp), ¥t €[0,5].

zeD

The norm is with respect to the background metric h.

Proof. By Lemma 2.4.1, we get that

sup [Vg(z,t)[* < c(n. b, D, go|p), Vt € [0, S].

zeD

Thus, if the h-flow is written in the form of

0
8t9k1+9 INVigu = fu,
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then fy, is bounded uniformly by a constant depending only on kg, n, h, go|p and

D. Using Theorem 9.1, Ch IV, §9 in [18], we have W2 estimates for g(t) with

||g||WqQ’1(D><(0’S)) S C(k()a n, h‘7 g0|D7 D7 q) ,fOI' all integer q.

Thus, by Sobolev imbedding Theorem, we get that

IV gllcaarpxoxsy < cko,n, h, golp, D, ).
By a priori parabolicity, we can deduce that

sup [V g(z,t)[> < C(m,n, h, D, go|p), ¥Vt € [0, 5].
zeD

]

Next, we give the local estimates of derivatives of g(¢) independent of the

compact set D.

Lemma 2.4.3. Let g(t),t € [0, 5] be a C*(D x [0,S]) solution to the h flow, for

some h which is 1+¢€(n) fair to g(t), for allt € [0, 5] (e as in Lemma 2.4.1). Then
_ , 1

sup |Vg(.§(f,t)’ SC(TL,h,T>— 7Vt€ [075]7

B(zo,r) t

where B(xg,r) denotes a ball of radius r with centre x¢ with respect to the met-

ric h. The norm is calculated with respect to metric h. The constant c¢(n, h,r)

decrease with the radius r.

Proof. By (2.9), we saw that the function ¢ (z,t) = (¢(z,t) + a(n))|Vg(x,t)?

satisfies

0 — — 1
(a - gaﬂvavﬁ)w S _57/)2 + CO(”y kOa kl) ,V(l’,t) € M x [07 S] (211>

Define f(x,t) = ¢(x,t)t, f satisfies

prage 12 f
« Vavﬂ)fg———+?+cot Y(x,t) € M x [0,S5].

(E_ 2 ¢
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For fixed zy € M, as in [32] we can use the background metric h to construct

time independent cut off function 7 satisfying

n(x) =1, Vo € B(xo, 1), (2.12)
n(x) =0, Vo € M\B(xq,2r), (2.13)
0<n(z)<1 ,VoeM, (2.14)
"V <o (%) m, (2.15)
ViVin > —cy (ko, %) hi;. (2.16)

Note also that the function n is C* almost everywhere and Lipschitz everywhere.
We can mollify the function 7 and obtain a C'* function satisfying the same
properties but for slightly different balls and slightly different constants. By
choosing a new constant and new balls, we assume n € C*(M).

Using the properties of 7, we get

o 1 2 o .
9PV V5)(fn) < —5777 + % + cotn — fg*PV oV an — 29°°V o fV s,

0
(57~
In this proof, we will use ¢ = ¢(n,h,r) to denote any constant which depends
on n, h,r only. Assume (xg,1%y) is an interior point of B(xg,2r) x [0, S] where fn

attains its maximum. Because of it , we get
afxT Y 2 afx~y ~ 2 afT T
—20"VafVen =g Val(fn)Van + 9 VeV g
2 = =
= =g "VanVn,

Ui

at the point (z, ). Together with (2.15) , (2.16) .it implies
~f9*'VaVgn = 2"V [V < cf,

at (xg,to). Consequently , we have

9 Ry, 1% fn
— 498 < _ -4 a4 S0
(5= 9"VaValfn s —5== + == +cf + 8.
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Since fn attains maximum at (zg,%y) and n € [0, 1], we can conclude that

1 t
0< —gf%](xo;to) + w
0 0

0< —%(fn(:z:o,to))2 + (1 + eS) fn(zo, to) + cS?

+ Cf((l?o, to) + C()S

0< —i(fﬁ(%ato))z + [eS? + (1 + ¢5)?]

f(z,0) = 0. This implies that supp,, . f(z,t) < C(n,h,S). Using 1 + €(n)

That is fn(x,t) < fn(ze,to) < C(n,h,S). Since n = 0 on 9B(xg,2r) and

fairness and the definition of f, we obtain the result. n
We now further obtain interior estimates of higher derivatives of g(t).

Lemma 2.4.4. Let g(t),t € [0, 5] be a C*(D) x [0, S] solution to the h flow, for
some h which is 1+ e(n) fair to g(t), for all t € [0,5], €(n) as in lemma 2.4.1.
Then

=i . 1 :
sup |V g* < c(n,i,r, ko, ki, kl)t_P Vit € (0,5],i € N,
B(zo,r)

where p = p(i,n) is an integer and B(xo,r) denotes a ball of radius r with respect

to metric h contained in D. The norm s calculated using metric h. The constant

c(n,i,r ko, ki, ...k;) decrease with the radius r.

Proof. Without loss of generality, we can assume S < 1. We calculate similar to

[32]. By the result of Lemma (2.2.2), V(x,t) € M x [0, 5]
0 =m = = =M = /=M = ,/=m
5V 9" < gV V gl = 20V (V9 Va(V )
+e(mmh) Y [Vgl[Vgl [V

i+j<myi,j<m

=i =i =k sl e=m
+c(m,n, h) > V' 9l IV gl [V gl [V gl [V g].

i jhH=m 42,05,k I <m+1
We will prove the interior estimate by induction on m. Let Q = B(xo,2r).

Assume that we already have

gl* < —— NreQ, tel0,8],i=1,2,..m—1
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For simplicity, we denote % — g%V, V3 by O. By assumption, we have

=m+1 ’

OV"g|? < —2¢"V,(V"9)V;(V"g) + —IV 9+ IV V7 + -IV 9|V

Where ¢ = g(n,m,h) € N denotes some power of p. In what follows we shall
freely replace powers of ¢ by ¢ and powers of ¢ by ¢. Using 1+ ¢(n) fair condition,

we can have

VAV ) V(V" ) 2 [V P
It implies that
D[V"gf? < —2(1 IVl + SR+ <, V@) €Qx[0,8]
Similarly,
O™ g < - TP+ S, V(at) €Q x [0,9]
2(1+¢€) t4

in view of induction hypothesis. Following Shi in [32], we define
=m—1 =m
U@ t) = (a+ V" gV g%,

where a is a constant to be chosen later. Combining two evolution equations , we

get

=m—1 =m =m =m—1 iie (=m—1l o= (=M
Oy = (a+ V" g )BIV gl + [V gDV gl* = 207ViV g V[V gl

=m—1 =m+1 C =m
< \Y %) 1= 24—V g+ =
F TP |~ (9 4 S| 4401+ O[T g 2T g T )
2(1+¢) te
By cauchy inequality, the last term satisfies
=m 1 =m+1
+ oIV gV gV Vit + =V
41+ €[V gV gl[V" !_8(1+ )\ gI" + \ gl-
So,
C a =m+1l |9
o< |———2 ||V
= Lﬁq 2(1+e)] Vo

3 —'m’4

_ Clar ST e
SV et IVl k)

ta’ta
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Using Cauchy Schwartz inequality and Young’s inequality, we deduce that

C a —=m-+1 2
Oy < |— — —
V< [tq 2(1+e>] Vg

c(1+ a*)
4 ’

|—m

gl* + (2.17)

4(1+¢)
for some g = g(n,m, h) € N.

Now we modify the function little bit which sets a to be a function of ¢.

2¢(1 =m— =m .
Define w(z,t) = t7™! {% + |V 1g\2] |V g|?, where c, q are constant given
n (2.17).
2¢(1+¢)

Noted that a(t) = > |vig|2, fori=1,2,.m—1.

t4

The evolution equation of the function ¢ (z,t) = [a(t)+ W’”‘l g?)[V" g|* becomes

0= a1 + 9Pl ¥l + [§<a+|v RN A
S L '4+(1%
S-qaeol

Then we can evaluate the evolution equation of w(x,t).

tq—l—l

t4q L 4(1+e)

1 w?
= (q+ 1) + g 1
t t4q 4(1+¢) tetifa(t) + [V g[2)?

C UJ2

g(q+1)t +th—§t‘H V(x,t) € Qx[0,9].

Dw(z,t) < (¢4 1)t% + V"l

Let f(z,t) = t>%w(x,t), and calculate its evolution equation.

f2 b
tlatl T ¢

1
ng%]“kctq—

Let n be the cut-off function in Lemma (2.4.3). Let ® = fn, and calculate the
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evolution equation of ®(z,1).

00 =0f-n+f-0On—2¢"VinV;f

ies , la+1)fn cf’n | 5qfn
S A A e s
2(1 +€) — 2 = —
+ (77 )|V77|2f—ﬁgjvmvj‘I>

Let (g, to) be the interior point of B(x, 2r) x [0, S| where ® attains its maximum.

By the properties of n, we conclude that

zo, to)

o 'd 2 o
0<cfpoint) o CHinlo) | o 2l0t)

to n(zo)ty™ to

where C'= C(n, h,m,r), ¢ = c(n,m,h) > 0.

Using the fact that S <1 and n € [0,1] ,we get
D (g, t9) < C" = C"(n,h,m,r).

It implies that
flx,t) <C", V(x,t) € B(xg,r) x [0,9]

The result follows from the definition of f(x,t). O

Theorem 2.4.5. Let g(t),t € [0, 5], h be as in lemma 2.4.4. Then

= ,.,k’,kﬁ,...]{?i
sup [Vig(a, i) < LotrRor ks k)
zeM t

,Vt € (0,5],7 € N.
Proof. Without loss of generality, we assume that S < 1. For any given tq € [0, S|,
-1 1 .
let R=1, <1. Let h = Eh’ g(t) = Eg(Rt). Then h is (1 + €)-fair to §(t) and
G(t) solves h flow. Noted that
k; = sup |ﬁViRiem(iL)|

zeM

2 < k.

Hence by lemma 2.4.4, we get

VG2 (2, 1) < e(n,i, ko, o) < e(nyi, ko, Kuy k).
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But

Vg (x,1) = RV gl (2, R) < c(n,i, ko, -.k;)

So ,
n, i, ko, kh kz)

gt < Vb

V(z,t) € M x (0,5].

2.5 Solution to Dirichlet problem.

As soon as we established the priori estimates, we are able to prove the fol-

lowing existence theorem.

Theorem 2.5.1. Let gy be a C*°(D) metric and h a metric which is 1+ ¢€(n) fair
to go on D, where D C M is a compact domain in M (e(n) as in lemma 2.4.1
and smaller than 6(n) in Lemma 2.3.2). There exists an S = S(n, ko) > 0 and a
family of metrics g(t),t € [0, S] which solves h flow, h is 1+ 3€e(n) fair to g(t) for
allt € [0, 5], and glop(t) = g0, g(0) = go.

Proof. Let S = S(n, ko, €) be the positive real number obtained in Theorem 2.3.3.

1
US :{u D x [0, S] — ®2T*(D)| ih” S Uyj S th]‘,u(l’,O) = (o, T € D,

u(w,t) = go,x € DD, |[ul| < +o0}

B = {u:Dx[0,S] = &T*(D)| u(z,0) = go,x € D,u(z,t) = go,x € OD, |Ju]| < +o0}

= =2
where ||ul|| = suppy .51 [tln + SUPpyo.5 IV Uln +SUPpypo.s) |V uln-

Let @ : Us x [0,1] — B be a solution operator such that v = ®(u, s) satisfies



Ricci Flow on Complete Noncompact Manifolds 34

the following parabolic system.

( O e — — _
Evkl = ﬁ”Vl-Vjvkl — SQCdﬁkphqulch - SfLCdﬂlphqukch

_}_gacdapq (7kupc : Vluqd + 27Cukp : vquld

—QWCU]W; . Vdulq — 4Vkupc : Vdulq) (2'18>
v(z,0) = sgo+ (1—s)h(x), x€ D

v(z,t) = sgo+ (1 —s)h(x), x € 0D

where u(x,t) = (1 — s)h(z) + su(z,t), s € [0,1]. v = P(u,s) is well defined
for all u € Us,s € [0,1] (see Theorem 7.1 in [18]) and ®(u,0) = h, Yu € Us.
To apply Leray-Schauder fixed point Theorem, we need to check that & is a
compact mapping. We first verify the continuity in u of ®(u,s) on Us x [0, 7.
Let v; = ®(uq, s), ve = P(ug, s), for v =v; — v9, u = u; — uy, using the fact that
u'l — v = w9 (Uys — vag), we have
Evkl —u]ijvivjvkl = Su * U *ﬁl’l *agl *W—l—su*ﬁl’l *ﬁ;l % Us % R
—l—su*ﬁl’l *1151 *vQUQ—l-SU*ﬁ;l *111’1 *ﬁ;l * Vup % Vuy

1 1

dosuklyt xdyt x Uy ok Vg Vug + 0y "+ dy '+ Vux Vg

+dyt * iyt * Vux Vg

Also,
v(z,0)=0,2€ D and wv(z,t)=0,2 € dD.

By the Schauder estimate in [17], we see that when u is small enough, v will
be small. The uniform continuity in s of ®(u,s) is proved analogously. The
compactness follows from the apriori estimate for supp,o g ||v]|c2+a (see [17])
and the Arzela-Ascolii Theorem. It remains to establish the apriori estimate for

the fixed point us = ®(us,s). If us = P(us, s), one may verify that g(x,t) =
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sus(z,t) + (1 — s)h solves

( %gm = ¢9V,Vgu — $°9“giph?" Ricga — 5>9°g1ph?? Rycqa

+29° 9" (Vigpe - Vigaa + 2V eGrp - VoGid

—2VeGkp - Vagig — 4V igpe - Vagig) (2.19)
g(z,0) = s*go+ (1—s*)h(x), x €D

L g(z,t) = s°go+ (1 —5°)h(zx), z € 0D

Using the same technique we used in Theorem 2.3.3, we can conclude that h is
a priori 1 4 3s% fair to g(z,t) for all t € [0,S]. Thus sup |ug, < 1+ 3e for
Dx[0,5]
all s € [0,1]. Also, argue as in Lemma 2.4.1 and Lemma 2.4.2, we can obtain
sup |Vuslp < CO(n,h, e, go) and  sup |72us|h < C'(n, hy €, go) for all s € [0,1].
Dx[0,5] Dx[0,5]
Thus by using Leray Schauder fixed point theorem, there exists a fixed point

g = ®(g, 1) which solves the h-flow with boundary data gq.

2.6 Existence of entire solutions.

In this section, our final goal is to find a sensible solution to the h-flow with
initial metric gy which is non-smooth. Before doing this, we first establish the

existence of h-flow on M with smooth initial metric gq.

Theorem 2.6.1. Let gy be a C®°(M) metric and h a metric on M which is
1+ e(n) fair to go, €(n) as in lemma 2.4.1. There ezists T = T'(n, ko) > 0 and
a family of metrics g(t),t € [0,T] in C®°(M x [0,T]) which solves h flow with
initial metric g(0) = go, b is (1 + 3€) fair to g(t) fort € [0,T], and

Vg < Lbko k) oo ien
t’L

Proof. 1f M is compact manifold, we obtain the result using Theorem 2.5.1 and

Theorem 2.4.5. If not , let {D;},7 € N be a family of compact sets which exhaust
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M, D; = B(h)(x¢,i) where B(h)(xg,?) is the ball of radius ¢ for some fixed point
xo with respect to the metric given by h.

Let g;(t), t € [0,T] be the Dirichlet solutions on D; with boundary data go. By
theorem 2.5.1, T' depends on n, ky only. Let D; be a fixed compact set. For each
i >> j, gi(t),t € [0,T] solves h flow on D;. On the other hand, since D; is
compact, we have

’2 = Cj,m < 400

up V" 9o
We now claim that [V g;(x,)|> < C'(m,n, h, j,C;,m) for all (z,t) € D; x [0,T],
i > 2j. If we are able to show this, we may apply Arzela-Ascolii Theorem to
obtain a subsequence convergent to a smooth limit g(¢),¢ € [0,7] on D;. Apply
this argument on each D;, we can take a diagonal subsequence which converges
to a limit solution g(t),t € [0, 7] on M. So, it suffices to prove the claim.
We prove it by induction on m. Let ¥(z,t) = [¢(g:) + a(n)]|[Vgi(z,t)|* as in
Lemma 2.4.1 .

By equation (2.9), we have

_ 1
(E — g*'VaVp)i < _§¢2 + co(n, ko, k1) V(x,t) € Dy; x [0,T]

Let n be the cut-off function in Lemma 2.4.3 with » = j now. Define F(z,t) =
bz, t)n(),
1 PR P
OF < =% + con = 207 VanV 0 = ¥g7 ViV m

1 Vi
< —2—F2 + con + C — 2g”—anF7 V(z,t) € Dyj x [0,T7.
n n

where C'= C(n, ko,j) >0 .
Assume (xg, o) is an interior point of B(h)(zo,27) x [0,T] where F(z,t) attains

its maximum. We get
F(xg,ty) < C"=C"(n, ko, ki1, J)
So, Y(z,t) € D; x [0,T]

U(x,t) < max(C’,sup ¥ (x, 0)) = C(n, ko, k1, j, Cj1).

Dj
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This implies

\Vgi(x,t)]> < C'(n,h,5,Ci1) ,Y(x,t) € D; x [0,7T]
Assume we already have

sup [V g;(z,t)|2 < C(m,n, h,j, go) V(x,t) € Dyj x [0,T],Vk € {1,2,..m — 1}.

27

As in the proof of lemma 2.4.4, we define ¢(z,t) = (a + |Vm‘lg|2)|ﬁ’”g|2 where
a is a constant to be chosen. By (2.17), we have
c a =mtl s 1 om g, c(l+a?)
op< |- ¢ S v are)
¢—Lq 2(1%)}‘ s LR B
Since we have upper bound independent of time, the constant ¢ in the above

equation is indeed 0, and c is in fact some power of C. We may assume that

c>C.

O¢ < \vmg\4+c(1 +a*),

~aral T - ameg

Choose a = 2¢(1 + €). Noted that a > C' .

1
4(1+¢)
¢° )
< ____r
T

= _C(m7j7 n, h790)¢2 + Cl7 \V/(.T, t) € D2j X [OvT]

Similarly we define g = ¢n . And follow exactly the same step, we may conclude
that
o(x,t) < C(m,n, h,§,Cm), Y(x,t) € D;x[0,T).

The claim follows immediately. O]

Theorem 2.6.2. Let gy be a complete continuous metric and h a complete metric

on M which is 1 + €(n) fair to go , €(n) as in lemma 2.1.4. There exists T =
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T(n,ko) > 0 and a family of metrics g(t),t € (0,T] in C°(M x (0,T]) which
solves h flow for t € (0,T] ,h is (1 + 4e) fair to g(t) fort € (0,7, and

lim sup |g(t) — go| = 0,

=0 peqy

=t ,.,k‘ 7kz .
sup [V g|* < sz—,o) vt € (0,T),i € N,
xeM t

where €Y is any open set satisfying ' C Q , where ) is any open set in which gg

1S continuous.

Proof. Let p be a fixed point on M, {D, = Bj(p,a)} be a family of compact sets
which exhaust M. Let ¢, : M — R be a smooth cut-off function on M, such that
©vq = 0 outside By(p,a) and ¢, = 1 on each Bp(p,a/2). Since D, is compact,
there exists d, > 0 such that inj(p) > d, > 0 for all p € D,. Thus, we can define
a sequence of smooth metrics which approximating gy by

“90(p) = 2a(P) / Mgo(Q)¢> (M) dg+ (1 —a)h ,Vpe M

n
€ a

where exp, : T,M — M is the exponential map of M at p, ¢, is chosen small
enough such that €, < d, and converges to 0 as a goes to infinity. ¢ is a nonnega-
tive smooth function on R™ with support on unit ball Bj,(0) satisfying fR” o =1.
{90 }aen is a sequence of smooth metrics which satisfy lim,,,, “go = go, where
the limit is uniform in the C° norm on any compact set. It follows that h is
(1+ %) fair to *gg for all @ > N for some N € N. We flow each “gy by h-flow to
obtain a family of metrics “g(t), t € [0,T], T = T'(n, ko) independent of a which

satisfy

Vgo)P <2, Ve (0.1)
independent of a, for all @ > N and h is 1 + 4e fair to each “g(t). We then obtain
a limiting solution g(x,t),t € (0,T] via g(z,t) = lim,_,o “g(t), which is defined
for all ¢ € (0,77]. This limit is obtained by using Arzela-Ascolii Theorem and it

maybe necessary to pass to sub-sequence to obtain the limit.
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It remains to show that the metrics g(t)|q uniformly approaches golos as t — 0.
We first obtain estimates on the rate at which it approaches to the limit if g is
smooth.

Let € > 0 be given as in previous lemmas. Using the evolution equation of h-flow
and 1 + € fairness, ¢* satisfies

%g"j < g*"V V59”7 + c(n, h)g¥ — S¥, (2.20)

where S¥ is a positive tensor. Fix xj in €', and fix a coordinate chart around o,

Y:U— M,xy € UCC . Define a (0,2) tensor [ by
LV, W)(x) = v (2)Wj () hp(w0) g5 (x0) ¥ (),

Noted that the tensor I depends on the coordinate chart and 1% (xo) = g (o).
By definition of [, we get

|

"lgi () — 19 (2)] < "gi () — g5 (xo)| +" |95 (w0) — hap(@0) gl (wo)hP ()] < =.

for all x € B(h)(xg,r) C U for some small r = r(go, h,e) > 0, where the last

inequality follows from the continuity of gf and continuity of A%. This implies
(1—-2e)h <1< (1+2e)h ,Voe B(h)(x,r)

And as a consequence of definition of [ and U being compact, we also have

S{fp IV VI <c(h,n,U).
B(h)(xo,r)

By (2.20), we get

0

507 = 19) < g*"VaVs(g" —19) + c(h,n, U)(g" — 1) + e(h,n, U)hY,

and hence

£ g = 1) — ) < gV Tple ' = 19) — ),
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for all & € B(h)(xo,7). Define (0,2) tensor f by f¥ = e~ (g — [¥) — cth” we
have (2 — g*#V,Vg)f7 <0.
Let n be the cut-off function as previous lemma for the ballB(h)(xg, r), withn = 1
on B(h)(zo,7/2) and n = 0 on OB(h)(xg,r). Using the properties of 7, we see
that
(57 = 9"VaVa)(f7) < = f7g"VaVisn = 20" VanV s "
<cfy— %gaﬁvanvg(nﬁj), where ¢ = ¢(n, h, %, U).

It implies that

o g g 1
(% = 9""VaVaIn(f7 — eith?) <0, for some ¢ = er(=,n, b, U).

Hence, by maximum principle, we get

€

nfi(@,t) = eath? () <nf(x,0) < shY(x), Vo € B(h)(zo,r).

DO |

So,

Fi(z,t) < (ert + %)hij, Va € B(h)(xo, g)”f €[0,7]

Fi(z,t) <eh | Vae B(h) (o)t < —,
2 2¢y

€
g — 17 < e+ )R < 2ehV, Va € B(h)(x, g),t < T(er,ee).

Substitute (2.21) into the above inequality, we get that

r

g7 —gi = g7 =17 +17 — g <3eh ¥z € B(h)(wo, 5 t<T(ece).
(2.22)
Apply the above argument to each *g(t). We have
o ) : 1
b9 < gi +3eh” Yz € B(h)(x, %), t<T(n,U h,e,—).
Ta

where r, is chosen such that

h|ag(i)j _a lij| < Vx € B(h)(xoﬂ"a)

DO ™
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We wish to choose 7 so that it is independent of a. Vo € B(h)(zo,7,) ,b > a

"ol () =P 19| <M Pgd = g |+ g = 1] A 1 =17

< 3e (provided that a, b are large enough).

So we can choose r > 0 such that it is independent of a.

Hence, g(t) = lim,_,o, “g(t) satisfies

g'U — géj < 3Eh” ,V:E S B(h) <-IO7 g) , 0 < T(Cla ) 6)' (223)

Let ¢ be the function defined in lemma 2.4.1. By calculation in the lemma , we

see that ¢ satisfies
_Qb S g vavﬁ¢+ CO(han) - _|Vg| 3
ot 8
Arguing as above, but for ¢ instead of ¢¥, we get
d(x,t) < ¢(x,0) + 3¢, for some S = S(n,h, go,€,) > 0. (2.24)
Combining (2.24) and (2.23), we see that

sup "|go(x) — g(x,1)| < e(n)em™, Vi€ [0,),Vx €
QI



Chapter 3

Existence of Ricci Flow in the

case of Kéc > ()

In this chapter, we will study the short time existence problem of Ricci flow
on open manifolds of positive complex sectional curvature without requiring the
upper curvature bound. The idea of proof is to consider the graph of a convex
function § on C; where its doubling is a smooth closed manifold (M;,g;) with
Kéci > ( converging to (M, g). And then estimate the lower bound for the lifespan
of Ricci flow on each (M;, g;) to ensure the maximal time will not degenerate to
0 when we let i — co. After that, we obtain curvature bound independent of ¢ of
arbitrarily large ball around the soul point pg which allows us to obtain a limit
solution on M.

For the case of K€ > 0, several additional difficulties arise. For instance, the
soul is not necessarily a point. But it can be overcame via splitting theorem (see
Theorem 5.1 in [10]). Another difficulty is that the sublevels set of Busemann
function C; = b7'((—o0,!]) have non-smooth boundary. By reparameterizing
the distance function d( -, (}), an sequence of C* closed manifolds D;; can be
constructed which converges to the double D(C;). But D, are no longer convex.

Fortunately, its complex sectional curvature can be controlled by estimating the
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hessian of d?( - ,C;). And, a curvature control can be obtained for some time for
the Ricci flows on (Dyx, gix). As a consequence, we can obtain a limit Ricci flow
(Di.00s Gi00) With K€(g100(t)) > 0 for ¢ > 0. It reduces the case of K€ > 0 to the

positively curved case.

3.1 Basic Background material

We first need to introduce the definition of complex sectional curvature on a

manifold.

Definition 3.1.1. Let (M™, g) be a Riemannian manifold and consider its com-
plexified tangent bundle T°M = TM @ C. We estend the curvature tensor R
and the metric g at p to C-multilinear maps R : (Ty M)* — C, g : (TyM)*> — C.
The complex sectional curvature of a 2-dimensional complex subspace o of T;CM

18 defined by

where u and v form any unitary basis for o. We say M has non-negative complex

sectional curvature if K€ > 0.

Definition 3.1.2. Let (M™,g) be a Riemannian manifold with n > 4. We say

M has nonnegative isotropic curvature if

R(e1, e3,€1,e3) + R(ey, eq,e1,e4) + R(ea, €3, €2, €3)
+R(€27 €4, €2, 64) - 2R(61, €2, €1, 64) Z 0
for all orthonormal four-frames {e1, ez, e3,e4} on M.
For manifold M™ with n > 4, the curvature on M x R? is given by

R(01, Ua, U3, 04) = R(v1,v2,v3,04) (3.1)

where 0; = (v;,€;) € Ty (M x R?) = T,M x T,R*.
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The following proposition gives equivalence of nonnegative isotropic curvature

and nonnegative complex sectional curvature.

Proposition 3.1.3. (see Proposition 7.18 in [29]) Let M™ be a Riemannian
manifold with n > 4, R be the curvature tensor on M x R? defined by (3.1).

Then the followings are equivalent.
1. R has nonnegative 1sotropic curvature.

2. We have

R(€17 €3,€1, 63) + )\2R(61a €4, €1, 64) + ,UQR(€27 €3, €2, 63)

+X2 U2 R(eg, €4, €9, e4) — 2uAR(e1, €3, €3,€4) > 0
for all orthonormal four-frames {e1, ez, e3,eq} on M, for all p, \ € [—1,1].
3. We have R(n,(,7,¢) >0 for all n,( € T;,CM pE M.

Proof. (1) = (2): Let {ey, e, €3, e4} be an orthonormal four-frames on M, u, A €

[—1,1]. We define

é1 = (e1,(0,0)), &= (pea, (0,4/1—p?)),
é3 = (€3,(0,0)), 1= (es, (0,V1—N2)).

The vectors {€;, €, €3,¢4} form an orthonormal four-frame in M x R% By (1),

we have

R(&1,83,61,83) + R(€1,E4,¢1,84) + R(E2, 5,6y, E3)
+R(Ey,E4,89,84) — 2R(E1,8,,61,84) > 0

which implies

R(e1,e3,e1,e3) + A’ R(eq, ey, e1,e4) + 1> R(ea, 3, €9, €3)

+ X212 R(eg, ey, €9, 4) — 2uAR(e1, €9, €3, €4) > 0.
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(2) = (3): Let 1,¢ € Ty M be 2 linearly independent vectors. Let o C 7 M be
the plane spanned by 7, (. By proposition B.3 in [29], there exists an orthonormal
four-frames {ey, 9, €3, €4} and real numbers A, u € [0, 1] such that e; + ipey and
es+iXey are in 0. Let z = ey +1ues and w = e3 4+ i)\ey, we can find a,b,c,d € C

such that ( = az + bw and 1 = cz 4+ dw. This implies
R(n,¢,7,¢) = |ad — be|*R(z,w, 2, 0).
Using Bianchi identity, we can obtain

R(Z, w, 27 QIJ) = R(ela €3,¢€1, 63) + )‘QR(ely €4,€1, 64)

+ M2R(627 €3, €2, 63) + M2A2R<627 €4, €2, 64)

- QM)\R(GM €2, €3, 64) >0
which implies (3).
(3) = (1): Let {€1,¢y,¢€3,¢é4} be an orthonormal four-frames on M x R?. We
write & = (2;,y;) € T(p.gyM x R?* where z; € T,M, y; € T,R?. Define = 21 + iz,
and 1 = x5 + ixy. It follows from the first Bianchi identity that

0 S R(na Cv 77]’ 5) :R(‘Tla X3, T, ZE3) + R(ZL‘h Xy, X1, 1‘4)
+ R(I27 X3, T2, x3) + R(x27 Ty, T2, 1;4)

— 2R([L’1, T2, T3, 1’4).
It implies
R(&1,83,61,83) + R(€1,E4,¢1,84) + R(E2, 3,6y, E3)
+R(Ey,E4,2,84) — 2R(E1, 89, 61,84) > 0

Therefore, (3) holds. O

Now we present a classification result about homeomorphic sphere.
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Proposition 3.1.4. Let (M", g) be closed with Kg: > 0. If M is homeomorphic
to a sphere, then the Ricci flow g(t) with g(0) = g has K;C(t) > 0 for all t > 0.

Proof. Since M is a sphere, the metric is irreducible and neither Kdhler nor
quaternion-Kahler.

If (M,g) is a locally symmetric space, it is symmetric as it is connected
and hence homogeneous. Homogeneous simply-connected rational cohomology
spheres are all classified (see [4]). These results give a list of pairs (G, H) such
that G/H is homeomorphic to a sphere. One can compare the list of classification
of symmetric space to see that SO(n+1)/SO(n) is the only possiblity which is a
round sphere. So, K;C > (. Since the positivity of complex sectional curvature is
preserved under Ricci flow (see Proposition 7.28 in [29]). In this case, it is done.

If it is not locally symmetric, we deduce that g as well as g(t) has SO(n)
holonomy by using the classification result of Berger [15]. We now prove that
ng(t) > 0 for all ¢ > 0. We follow the steps in Proposition 7 of [27]. Let ¢’ > 0
and ¢’ = g(t'). Noticed that since K€ > 0 is preserved under Ricci flow (see
Proposition 7.28 in [29]), by Proposition (3.1.3), we have

Rg/(el, €3, €1, 63) + )\QRQ/(Qh €4, €1, 64) + /LQRg/(eg, €3, €9, 63)

+)\2u2Rg/(62, eq,e2,e4) — 2uUARy (€1, e2,e3,€4) > 0

for all orthonormal four-frames {ey, s, €3,e4} and all p, A € [—1,1].

Now, it suffices to show that

Rg/(ela €3, €1, 63) + )\2Rg’(617 €4, €1, 64) + /’[’2Rg'<€27 €3, €2, 63)

+)\2/L2Rg/(62, €4, €9, 64) — 2,LL)\R9/(€1, €9, €3, 64) >0

for all orthonormal four-frames {ey, s, €3,e4} and all u, A € [—1,1]. Suppose it

is not true, there exists a orthonormal frame {e;, €3, €3, €4} in T, M with respect
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to ¢’ and satisfies

Rg’(ela €3,€1, 63) + )‘QRQ’(eh €4,€1, 64) + M2RQ'(627 €3, €2, 63)

+)\2,M2Rg/(€2, eq,€2,6e4) — 2uARy(e1, e2,e3,e4) = 0.

Since the holonomy group is SO(n), the manifold is not flat. Hence we can find

a point ¢ € M and an orthonormal frame {v;,v,} C T, M such that

Ry (v1,v9,v1,v2) > 0.

Let 7 : [0,1] — M be a piecewise smooth path from p to ¢q. Since Hol®(M, ¢') =

SO(n), we can find a loop o : [0,1] — M at p such that v; = P, o P, e; and

vy = P, o P, e (Here, P, denotes the parallel transport along v with respect to

the metric ¢’). By using the Proposition 9 in [27], we know that the equality is

invariant under parallel transport. So

Rg’ (U17 v3, U1, 03) + >\2Rg’ (7117 U4, V1, U4) + HQRg’ (02, U3, V2, U3)

+)\2/,62Rg/ (2}27 V4, V2, U4) - 2[,6)\Rg/ (Ul, V2, U3, 1)4) =0 (32)

where vz, v4 € T, M defined by v; = P,os¢;, © = 3,4. Similarly, we can show that

Ry (v1,v9,v1,v2) + )‘2Rg'(712,714,U2,U4) +NQRg’(U1J)3,U1,U3)

+ X217 Ry (v3, 04, U3, 04) — 2UARy (v2, v3,v1,04) = 0 (3.3)

and

Rg’ (U27 U3, U2, U3) + )\ZRg' (U37 V4, U3, U4) + /’LzRg' (U27 U1, U2, Ul)
+)\2u2Rg/(v1, Uy, V1, V) — 2uARy (v3,v1,v2,04) = 0. (3.4)
Sum up (3.2), (3.3) and (3.4). This yields

[Rg’(vla Vg, V1, /UQ) + Rg’ (Ul7 Vs, V1, U3) + Rg’ (U27 U3, Vg, U3)]

+ )\2[Rg’ (U17 Vg4, V1, U4) + Rg/ (1)27 Vg, V2, U4) + Rg/ (IU47 V3, Vg, U3)]
=0.
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Since (M, ¢') has nonnegative sectional curvature, it follows that
Rg’(vla V2, V1, UQ) - 0

which contradicts with our assumption.

3.2 Cheeger-Gromoll convex exhaustion.

Let (M, g) be a nonnegatively curved open manifold. A ray is a unit speed
geodesic v : [0,400) — M such that 7|4 is minimizing geodesic for any s > 0.
Fix o € M, let

Q={7:]0,400) = M : v is a ray with v(0) = o}.
Consider the busemann function b of M.

b(p) = sup{ lim (s — dy(7(s),p))}-

'YEQ §—00
In case of non-negatively curved open manifold, Cheeger and Gromoll (see
[13]) show that b is a convex function, that is for any geodesic ¢(s) € M the

function b o ¢(s) is convex function on R.

Throughout the chapter, we will make use of the family of sublevel set
Cr=b""((—00,1))

to construct a sequence of Ricci flow and sub-converge to a solution on M. The

following properties of C; will be used in this paper.

Proposition 3.2.1. If (M,g) has nonnegative curvature with C; constructed

above, then C) has the following properties. (see section 1 in [13])

(1): Each Cj is a totaly convex compact set,
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(2): dim Cp=mn for alll > 0, UjsoC; = M,
(3): s <l implies Cs C C; and Cs = {x € C} : dy(z,0C;) > | — s},

(4): each Cy,l > 0, has the structure of an embedded submanifold of M with

smooth totally geodesic interior and possibly non-smooth boundary.

Furthermore, if (M, g) has positive sectional curvature, by local smoothing

procedure, one can modify the Busemann function to obtain a smooth function

B.

Theorem 3.2.2. (see [31]) If (M, g) is an open manifold with K, > 0, then there

exists a smooth proper strictly convex function : M — [0, o0].

3.3 Approximating sequence for the initial con-
dition.

Let (M, g) be an open manifold with K, > 0. On M, we consider the function
B. Since S is proper and bounded below, global minimum is attained. Without
loss of generality, we assume the global minimum is 0. Furthermore, since [ is
strictly convex, we have 371(0) = {po}. Since 8 is a smooth convex function,
hence the sublevel set C; = {x € M : f(z) < i} is a convex set with smooth
boundary for all 7 > 0.

Our goal here is to construct a pointed sequence of closed manifolds converging

to (M, g,po) in the following sense.

Definition 3.3.1. (Cheeger-Gromov convergence). Let (M, g;,p;) be a sequence
of complete manifolds. We say (M;, g;, p;) converges to the pointed Riemannian

manifold (Ms, §oo, Poo) if there exists

(1): a collection of {U;}i>1 of compact sets with U; C Ujy1, Ui>1U; = My, and
Poo € int(U;) for all i

49
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(2): ¢; : Uy — M; diffeomorphisms onto their image, with ¢;(ps) = p;
such that ¢fg; — goo Smoothly on compact set of M, that is
IV™(@Fgi — goo)| = 0, as i—o0 on K, YmeN

for every compact set K C My,. Here the norm and V are computed with respect
to any fixed background metric.

A sequence of complete evolving manifolds (M;, g;(t), pi)ier converges to a
pointed evolving manifold (Muo, goo(t), Do )ter if we have (1),(2) as before such
that ¢f(t) — goo(t) smoothly on compact subsets of My, X I.

The first attempt would be to consider the double D(C;) of C;. However,
D(C;) may not be a smooth manifold. So we try to modify the metric near the

boundary 0C; to form cylindrical end so that the gluing is well defined.

Proposition 3.3.2. Let (M, g) be an open manifold with K;C > 0 and soul point
po. Then there exists a collection (Mi,gi,po)@l of smooth closed n-dimensional

pointed manifolds with K(gci > 0 satisfying
(Miagiap0) — (M7g7p0> as 11— 00
in the sense of the smooth Cheeger-Gromouv convergence .

Proof. Let s > 0 be fixed and small. For each fixed C;, choose ¢; such that

a) ; is smooth on (—o0,7) and continuous at 1,

b) ¢; =0 on(—o0,i — s] and ¢;(i) = 1,

.
(
(
(c) ¢, 7 are positive on (i — s,1),
d) and the inverse of ¢;, ¢!, has all left derivatives vanishing at 1.
\ (2

Take u; = p; o 3, and put

G; = {(z,u;(x)) : x € C;}
{

Gi={(x,2 —u(x)):x € C;}
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(d) ensures that they paste smoothly together to a C* closed hypersurface
D(G;) = G;U G; C M xR , where M x R has nonnegative complex sectional cur-
vature. We now claim that D(G;) = (M;, ¢;) has nonnegative complex sectional

curvature. First we observe that u; is convex function on Cj;. Since for any vector

field X on M,
Vzuz'(X7 X) = (VxVu;, X) = ¢y - (VXB)Q + @ - V25(X7X) = 0.

Noted that the submanifolds G; and G; are isometric. So it suffices to prove that
G; has nonnegative complex sectional curvature.

For simplicity we denote w; by f. Let ¢ = (p, f(p)) € int(G;), consider T,G;.
Let {27} be local chart at p. Then (z!,...,2",t) gives a chart at ¢ € M x R.
{ej}io, = { 0 + of 2}” forms a basis for T,G;. Let V be the connection

Ozl 0w Ot |,
on M x R induced by the product metric. By Gauss Codazzi equations,

R(X,Y,X,Y)=R(X,Y,X,Y)+ (B(X,X),B(Y,Y)) — |B(X,Y)|~

Here Rm is the curvature tensor on M x R and B(-,-) is the second fundamental

form which are extended complex linearly. So it suffices to show that for each 4, j
<?€z‘6iLv ?ejejL> - <?€i6jL7 vez'ejl> >0

8 n
Assume {—]} is an orthonormal basis at p, then we obtain

Ol )
_ 0%f 0
Vel = 55530 ¢=(p, f(p))-
Let N be the normal vector field on G; , and N' = (N, %> It implies
_ Pf 0
) .J_ — ! - Cog
Vie; N 5207 B Vi, g =1,2..n,

Since f is convex function, we get

(Veeit, Ve,e;) = (Vees™, Vees ) = (fufi — o) (N')* >0
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If ¢ € 0G; C D(G,), let g; be a sequence of point in int(G;) such that ¢; — ¢
as j — oo. From above, we have K®(¢;) > 0. By taking limit, we deduce that
K®(q) > 0. Noticed that C;_. can be seen as subset of M; for all i > 0, which
implies that (M;,g;,po) converges to (M, g,py) in the Cheeger-Gromov sense.
Since (M;, g;, po) are closed manifolds, we can use the short time existence of the
Ricci flow on M; (see [26]), and choose t; > 0 small enough that (M;, g;(¢;), po) still
converges to (M, g,po). By Thm 2.5 in [13], we know that C;_. is homeomorphic
to a disc. Hence, M; is a topological sphere. We can employ Proposition (3.1.4)

to conclude that K;S(t) > 0. Thus g;(t;) is a solution of our problem. ]

i

3.4 Ricci flow on the approximating sequence.

Consider (M;, g;, po) the sequence of closed, positively curved manifolds ob-
tained from above. For each i, we construct a Ricci flow (M;, g;(t)) defined on a
maximal time interval [0,7;) with ¢;(0) = g;.

The first difficulty to address is that the curvature of g; may tend to infinity
as ¢ — oo. It maybe happen that T; — 0 as ¢ — oco. So our next concern is
to prove that T; admit a uniform lower bound independent of . We estimate it
by considering the volume growth of unit balls around py. For such estimate, we

make a strong use of the following theorem.

Theorem 3.4.1. (Petrunin,[1]) Let (M",g) be a complete manifold with K, >
—1. Then for any p in M

/ scaly dVy, < Cy,
Bg(p71)

for some constant C,, depending on the dimension only.

Proposition 3.4.2. Let (M, g) and (M;, g;,po) be as in Proposition 3.3.2. Then
there exists a constant T > 0, depending on n, and Vi = voly(By(po, 1)), such
that the Ricci flows (M, g;(t)) with g;(0) = g; are defined on [0,7], and satisfy
Ky 4y >0 forallt €[0,7].



Ricci Flow on Complete Noncompact Manifolds 53

Proof. For each i, (M;, g;) is a closed n-manifold. So there exists some T; > 0
and a unique maximal Ricci flow (M;, gi(t)) defined on [0,7;) with ¢;(0) = g;.
Moreover , K;S(t) > ( for all t € [0,T;) as positive complex sectional curvature is
preserved under Ricci flow. It remains to show the uniform lower bound for the
lifespan.

Since Ricg,yy > 0,the metric is shrinking which implies that B,,)(po, 1) C

Bg,)(po, 1). Using the evolution equation of volume form, one can deduce that

0
57 V%) (Bgi(o) (po, 1)) = — / scalg,r) dVg,r)
By, (0)(po,1)

Since scalg,) > 0 and By, 0)(po, 1) C By, (o, 1),

0
EvOlgi(t)(Bgz‘(O)(poa 1)) > _/ scalg, ) AV, = —Cy (3.5)

By, t)(po,1)

The last inequality follows from Theorem 3.4.1. Hence,
UOlgi(t)(Bgi(O)(pm 1)) - UOlgi(0)<Bgi(0)(p0a 1)) > _Cnt > _Onirz
So,

1
Ti 2 = [volgy(o) (Bao) (Po, 1)) = volyuw)(Byio) (po, 1))]

On the other hand, as M; is closed with K;Ci > 0, the normalized Ricci flow
converge to a metric of positive constant sectional curvature as time goes to
infinity (see [28]). Thus, the volume of (M;,g;(t)) vanishes completely at the
maximal time T; . So

1 1
T > C—Uolgz-<0>(Bgz-(o>(po, 1) — C—wlg(Bg(Po, 1)) =27

n n

]

As a consequence, we obtain a uniform lower bound for the volume of unit

balls centered at the soul point.
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Corollary 3.4.3. For the sequence of pointed Ricci flows (M;, gi(t), po)tejo,r from

Proposition 3.4.2, we can find a constant vy = vo(n, Vy) satisfying

v0lg, 1y (Bgity (o, 1)) > vg >0, Vt €[0,7].

v
Proof. Using again (3.5) and t < 7 = 2(;) , we obtain

n

v0lg, (1) (By,(t)(Po, 1)) > volg, ) (By,(0)(po, 1))

> UOlQi(O)(BQi(O) (p07 1)) — Cut

3
ZZ%_CHT

\%
:ZO—U0>O

3.5 Interior curvature estimates around the soul
point.

In order to get a limit Ricci flow solution from the sequence (M;, g;(t)), the
first step is to obtain uniform curvature estimates independent of 7. In this sec-

tion, we will show the curvature estimate around the soul point py.

Lemma 3.5.1. Let (M™, g) be an open manifold with K;C >0, then
{u: Rm(unv) =0, forallve T(M)} ={u: Rm(u,v,u,v) =0, for allve T(M)}.

Proof. Clearly, {u : Rm(u Av) =0, forallv € (M)} C {u: Rm(u,v,u,v) =
0, for all v € T(M)}. It remains to show the opposite direction. Let u be an
element in {u: Rm(u,v,u,v) =0, for all v}.

If n = 3, since K > 0 will imply Rm > 0. For any v € T,M and ¢ € \*(T,M),

by considering

f(t) = (Rmy(uhNv+tp), uhNv+td) >0 ,teR
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which attains minimum at ¢ = 0. f’(0) = 0 implies that Rm, (u A v) = 0.

If n > 4, by Proposition (3.1.3), we have for all orthonormal base {ej}}_;,
where e; = u/||ul| and A\, p € [—1,1],

Riziz + 1° Rigia + N Rogos + N2 Rogoy — 2AiRi934 > 0
If we let
F(\, 1) = N Rogas — 2\ R34 + N1 Rogoa, A, pu € [—1,1].

Since we know F' > 0 and attains minimum at (0,0), V2F > 0 at (0,0) implying
Ro123 = 0. As ey, e3, e4 can be arbitarily chosen, we deduce that for any 7, j, k > 1
distinct,

(Rmyg (€1 Ne;i),ej Neg) =0.

For any i,j € {2,3,...n} distinct, we let H(t) = Rm(e;+te;, e;,e1+te;, ;) ,t € R.
Since K > 0, we have H(t) > 0 and attains minimum at ¢ = 0. So H'(0) = 0
which imply

(Rmg (e1 Ne;),eiNej) =0.

Similarly, we also have
(Rmyg (e1 Nei),er Nej) =0.

Thus, Rmy (u A v) =0 for all v at p.
[

Lemma 3.5.2. Let (M",g(t)),t € [0,T] be an complete solution of Ricci flow
with bounded curvature. Then for each t € [0,T], N(t) = {u : Rm(t)(u Av) =

0, for all v € T(M)} is invarient under parallel translation.

Proof. Fixt € [0,T], u € N(t), we would like to show that for any vector field X,
Vxu € N(t). By Lemma (3.5.1), it suffices to show that Rm(V,u,v, Vu,v) =0
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9
ozt

for all v and coordinate vector field 0; =

At p e M, Rm(u,v,u,v) =0, extend u(p),v(p) to U,V by parallel transport
along the integral curve c¢(s) of 0; emanating from p. By strong maximum prin-
ciple in [27], we have Rm(U,V,U,V)(c(s)) = 0 for all s € R. Taking first and

second derivatives with respect to s and evaluate at p, this yields
(ViRm)(u,v,u,v) =0 and (V;V;Rm)(u,v,u,v) =0, at p.

As p is arbitarily chosen, the equalities hold on M. Taking derivative on the first

equation, we have

0 = 0;[(V;Rm)(u,v,u,v)]
= (V;V;Rm)(u,v,u,v) + 2(V;Rm)(Vu,v,u,v) + 2(V;Rm)(u, Vv, u,v)

We obtain
(V:Rm)(Vu,v,u,v) + (V;Rm)(u, Vv, u,v) = 0. (3.6)
Consider the first term.

(ViRm)(Viu,v,u,v) = 0;[(Rm)(Vu,v,u,v)] — Rm(V,;Vu,v,u,v)
— Rm(Vu, Vv, u,v) — Rm(Vu,v, Viu,v) — Rm(Vu, v, u, V,0)
= —Rm(V,u,v, Viu,v).

Doing similar step on the second term, together with (3.6), we deduce that

Rm(Vu,v, Viu,v) = 0.
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Lemma 3.5.3. Let (M",¢g(t)),t € (—00,0] be an open non-flat ancient solution
of the Ricci flow. Assume further that g(t) has bounded curvature operator, and
that ng(t) > 0. Then for all t € (—o0,0], we have

o(t) = lim Y220 Boto7)

r—00 rn

=0.

Proof. We first claim that v(t) is non-increasing on time ¢. Since the curvature

is bounded, by Lemma 8.3 in [12], there exists C' > 0 such that for all p,x € M,

d
~d > _
dt i(p,z) =2 =C
which implies for s > 0,
dst+(p,x) > di(p,z) — Cs. (3.7)

Thus, Byys(p,r) C Bi(p,Cs + r), which gives
V0l y(45)(Biys(p, 7)) < volg(ris)(Bi(p, Cs + 1)) < volyw(Bi(p, Cs +1)).

The last inequality is due to the fact that the metric is shrinking. So, for all

s> 0,
fim V0lg(t+5)(Bits(p, 7)) < lim voly)(B(p,Cs + 1)) . Cs+r\" _ult)
oo rn r—00 (CS -+ T)n r

which implies v(¢) is non-increasing on time t.
We now prove the lemma by induction on dimension n. When n = 2, if the

statment is false, then there exists to < 0 such that

> 0.

v(tg) = lim v0lg(t0) (By(to) (5 7))

7—00 rn

Combining with the fact that v(¢) is non-increasing, v(t) > wv(to) > 0, for all
t < tg. Thus, it is a k-solution. By Corollary 11.3 in [12], there are no noncompact

k-solution in dimension 2. Hence, we are done in this case.
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Assume the statement holds in dimension n—1, where n > 3. If the statement

is false, there exists ¢y such that for all ¢ < ¢,
v(t) > v(ty) > 0. (3.8)

Without loss of generality, we assume ty, = 0. Now, we consider the following 3

cases.

Case A. ASCR(0) = +o0
Case B. ASCR(0) € (0,00)
Case C. ASCR(0) =0

where ASCR(t) = limsup d2(z,p)R(z,t), p is a fixed point on M.

dt(z,p)—00

Case A.

If ASCR(0) = 400, By Lemma 22.2 in [25], there exists a sequence of points
{z;}%°, with do(z;,p) — oo and radius r; > 0 such that R(z;,0)r? — oo,

)

d0<xi7p)/ri — 00, and
R(z,0) <2R(x;,0) ,¥ x € Bo(x;,r;).
Let

6i(t) = R(z:,0)g (R(%O)) e (—o00].

The assumption (3.8) implies that injg,)(z;) > 6 for some 6 > 0. By
trace Harnack inequality in [30], we have %R > 0. Thus we have for all z €

Bgi(o)(xi, R(IZ, 0)7"1‘), t e (—OO, 0],
Ry, (z,t) < Ry (,0) < 2.
Applying Hamilton’s Cheeger-Gromov-type compactness theorem, we conclude

(Bgi(o)('ri? R(Iz’ao)?“i)7gi(t)a$¢> — (M2, go(t), 2s0)
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where t < 0 and R,_(%«,0) = 1. The limit is a complete non-compact solution
with R, (z,t) < 2.

Since the metric is shrinking, by the construction of {z;}, we get
R(Z‘k7 0)d2(xi7p7 S) > R(xlm 0)d2<'ri7p7 0) — +00

as k tends to infinity, for any s < 0. Thus, by Proposition 6.1.2 in [7], we know
that (M7, gso($), Zoo) splits off a line for each s < 0.
We now calim that there exists ¢ < 0 such that the limit solution splits as

product on (—oo,t']. By above, we know that at t =0
(MZ, 90(0), 2o0) = (Ex x W', dui + gw)

where E; is a copy of R. We denote 0 by s;. If the splitting holds for all ¢t < sq,
then we are done by taking ¢’ = s;.
Otherwise, there exists sy < 0 such that at ¢ = s3, (My, goo(S2)) doesn’t split

off E;. But since it must split off a line, we have
(M2, Goo(52), Too) = (B2 x W™, duj + gw,)

where E, is another copy of R. By Theorem 1.1 in [6], we know that (M, goo(51))
must splits off E,. That is

(M, goo(0), To0) = (Eq x By x WK™t du? 4 du2 + gw,,)

If the splitting holds for all ¢ < s, then we take ' = s,. Otherwise repeat the
above procedures to get s3. But as the dimension is finite, the process can only
be iterated for finitely many times. So we can let ¢’ be the last s,. And we can

conclude that
(Mn 7g00( ) OO) = (R X anl’ du2 +gW) 7t € (—OO,t/]-

In particularly, the R component comes from the splitting line at time s;.
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Now we claim that (W, gw(¢')) has positive asymptotic volume ratio. By

volume comaprsion theorem, we have for any » > 0, and ¢ € N,

Volg, @) By (@, 7) _ Volgw r,.0) Baw /.0 (£, / B(xi, 0)r)
rn (v/R(zi,0)r)

v(t'/R(x;,0)) > v(0) > 0.

. .. . l D) ’ i
Passing to limit, we obtain VOlyoet) Byoott) @) > v(0) > 0, for all » > 0. Denote

T

Too = (0, xyw ), for product metric, we have

Bgoo(t,)('roo7,r) C (—T, T) X BQW(t,)(‘rW7T)7

VOlgoo(t/)(Bgoo@/)(xom )) < QTVOZQW t (ng(t/)(IWar))'

Hence,

Volgy @) (Bgy ey (Tw, 7)) > VOlgoo(t’)(Bgoo(m (Zoo, 7))

pn—1 - 2rn >0

which contradicts with the induction hypothesis.
Case B.

If ASCR(0) € (0,00), by the definition of ASCR, there exists a sequence of points

x; € M such that as 1 — oo,

Let b, B be two real numbers such that 0 < b < y/ASCR(0) < B < co. Define
the rescaled solution {(M, g;(t))}ien with g;(t) = R(x;,0)g (%). We have as

7 — 00,

xmp \/ xm dg(O 'rlap — V ASCR( ) ( )

Let N;(b, B) = Bg,0)(p, B) \ Bg,0)(p,b). By trace Harnack inequality in [30], we
have the curvature bound

2ASCR(0)

Rgz (ZE t) < Rgz(‘r 0) — d (I’ p)
9i(0)

< C(b, ASCR(0))
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for allz € N;(b, B), and t < 0. Again by the assumption 3.8, we have injg, ) (x;) >

0 > 0. Applying the local compactness theorem, we obtain that for a subsequence,
(N’L<b7 B)a gz(t)> xz) - (Noo(ba B), goo(t)7 moo)

as ¢ — 00. On the other hand, as ¢;(0) = R(z;,0)g(0), R(x;,0) — 0 as i — oo,
and K (g;(0)) > 0, by Theorem 1.26 in [3], we have that

(M™,9:(0),p) = (CW, dus, Do)
converges in the pointed Gromov-Hausdorff topology as ¢+ — oo, where
CW = ([0,00) x W)/({0} x W).

By changing the fixed point p € M to a sequence of fixed point {y;} which
is uniformly bounded distance away from each others. Then the corresponding
Gromov-Hausdorff limit is isometric to the original limit which gives a smooth
(n — 1) manifold structure to W. And there exists a Riemannian metric gy on

W such that (CW,d) has a Riemannian metric given by
oo (0) = dr® + rPgy . (3.9)

At p € CW, let {y’ };‘:_11 be the local coordinates on W. We further assume
{0; = % ?;11 is normal coordinate at p. Since metric is in form of (3.9), we have

(Rmy0) (0, NO;), 0. ND;) =0,Yj=1,2.n—1.

Since K;Coo ) = 0, as shown in the proof of Lemma (3.5.1), we deduce that for

all j, Rmy_ (o) (0r A 0;) = 0 at p. By Lemma (3.5.2), it implies
Rm(V;0, N\ 0;) = 0 for all j, at p.

On the other hand, (3.9) implies V;0, = 19;. Thus, Rm(9; A 9;) = 0 for any i, j
which means Rmy_ ) = 0 at p. As p is arbitary point on C'W. It is flat which
contradicts with the fact that Ry _ (o) (%0, 0) = 1.
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Case C.

If ASCR(0) = 0, we have lim supg, ), R(x) = 0. By (3.7), and Harnack inequal-
ity in [30], we infer that for each t < 0 and each z € M,

0 < d*(z,t)R(z,t) < [d(x,0) — Ct]*R(x,0).

It implies that ASCR(¢) = 0 for any ¢ < 0. By the result of Petrunin and
Tuschmann (see Theorem B in [20]), we have for each ¢ < 0, the universal cover
of (M™, g(t)) is isometric to R"% x (3, gs) and that (X, gs) has ASCR= 0. Using
similar arguement as in case A, the universal cover of (M™, g(t)) is isometric to
R"2 x (3, gs(t)) at which (3, gs(t)) is a x-solution. But the only two dimension
k-solution is round sphere in which R"™2 x (3, g5(0)) is not possible to have

ASCR(0) = 0. So this case can be ruled out. O

Proposition 3.5.4. Consider the Ricci flows (M;, g;(t)) with t € [0,7], coming

from Proposition 3.4.2. For any D > 0, there exists a constant Cp > 0 such that
Cp .
scalg, i (x) < -+ forall i>1, x¢€ Byu(po,D) and te(0,7]

Proof. Assume not. Then we can find a constant Dy > 0 so that there exists
ir > 1,1, € (0,7) and pr € Bi(po, Do) = By, () (Po, Do) which satisfies
4k

scaly(pr) = scalg, 4,y (Pr) > o (3.10)

Claim: We can find {p,} such that it satisfies 3.10 and
scalg, ) (p) < 8scaly(pr)

k
for all p € By(pg, ——), t € [ty —

scaly(p) scaly(pr) d k(Dk, Po) 0
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As K€

oty = 0, by using the trace Harnack inequality in [30]. In particular ,

K t
s Uk |
)

it gives 2 (¢ - scalyy) > 0. This yields for any ¢ € |t — scalr (pr

178
tk — /{J/SCCle (pk)

t
scalg, 1y < ?kscalk < < 2scaly,

k

k
The last inequality follows from the fact that scalg(py) > — implies ——— <
ty scalg(p)

t
Zk. So it suffices to find py satisfying
k

1. scalk(px) > — ,and
t

2. scalg(p) < 4scaly(py) for all p € By (pg, k/+/scaly(pr)).

If pr does not satisfy (2), one can find a x1 € By(pg, k/+/scalx(pr)) such that
scalg(x1) > 4scalg(pr). Check if (2) holds for py = x; , that is

scaly(p) < 4scaly(z1) for all p € By(x1, k/+/scal(z1)).

In case this is not satisfied, we process inductively and obtain a sequence {x;};>2

such that

) 4itk
1. scaly(x;) > 4scaly(w;_1) > ... > 4" scaly(x1) > - ,and

k
2. x; € Br(xi_1,k/+/scalg(x;_1))

If this sequence is finite ,that is {z;}i>1 = {z1,22,..xx}. Then we can take
Dr = = which satisfies the required properties. We now claim that this sequence
can only be finite. Suppose {z;};>1 is a infinite sequence .

Since scaly(z;) > 4'scaly(pi), we have

k _ k _ k T
scaly(ri_1)  2i\/scalp(py) 2807

This implies that for any k >> 7

dip (2, 2-1) <

: k
di(i,p0) < Y di(wj, 2521) + di(pr po) < Do + ﬁﬁ < Do+ 1. (3.11)

j=1
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By convention , we denote xy = pg. So {z;};>1 lies on a compact ball which

contradicts that scaly(z;) — +00. So the sequence {z;},>1 must be finite.

Because of (3.11) , it follows that for any r > 0, By(po,r) C Be(pr, 7 + Do + 1).
Thus for any r € [Dy + 3/2, Dy + 2],

UOlk(Bk(f)k, 7“)) S UOlk(Bk(pk,T’ — DO — 1))

,r.n - Tn

> voli(By(po, 1)) (T_D#)n

r

1 n
>V | == =0 >0
- L(Do + 2)} ’
By Bishop-Gromov inequality , it ensures that the inequality holds for smaller

radius. i.e.

’UOlk(Bk (ﬁk, 7”))

T-TL

2170, Vr € (0,D0+2]
Now, we define the parabolic scaling of the metric.

r(s) = Qrg(ty + sQ;l), where Q) = scaly(pr),

In addition,we have a lower bound for the volume ratio. More precisely , we have

for all 0 < r < (Do + 2)v/Qx,
volg, ) By (Pr. 7)) _ L / vV det(§i(0))da
T r Bg, (0)(Pr>7))
(\/@k) /det(gk)dx

> v >0, (3.12)

r /Bk (Pror/V/Qr)

On the other hand, we have curvature bound on the new metric around py, .
1
0 < scalg,(s) = @SCGlg(tk_,'_sQ;l) <8, (3.13)

on By, ) (Pk, k) for all s € [—k,0].
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Combining these results and use the Theorem (see appendix) by Cheeger, Gromov

and Taylor. We may conclude that
injg, o) (Pr) > c(n, 99) > 0. (3.14)

Joining the estimate (3.13) and (3.14) together and apply Hamilton’s compactness
(see [25]) to the pointed sequence

(Mg, g(s), pr), s € [k, 0].

We obtain a subsequence converging in the smooth Cheeger-Gromov sense to a

complete smooth limit solution of the Ricci flow
(Momgoo(t)ypoo) te (—O0,0]

First noted that the diameter with respect to gi(s) tends to infinity as Qp — +00.
So it is non-compact. It is non-flat since scaly _(0)(pso) = 1. Finally, it has
bounded curvature because of (3.13) with K;Cw(t) > 0.

Moreover , from (3.16) , we have

v0ly..(0)(Bgeo (0) (Poos )
,r»n

> Uy for all r > 0.

which contradicts the result of Lemma (3.5.3). O

3.6 Proof of short time existence for the posi-
tively curved case.

As soon as we establish the a-priori estimate of curvature around the soul, we are

able to prove the short time existence of Ricci flow on the whole manifold.

Theorem 3.6.1. Let (M",g) be an open manifold with K;C > 0. Then there
exists T > 0 and a sequence of closed Ricci flows (M;, gi(t), po)iejo,r] with K;S_(t) >0
which converge in the smooth Cheeger-Gromouv sense to a complete limit solution

of the Ricci flow (M, goo(t), po) fort € [0, 7], with goo(0) = g.
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Proof. Consider the sequence (M;, g;(t)) with ¢ € (0, 7], coming from Proposition
3.4.2. For any j fixed, consider By(po,j) C M.

By Proposition 3.5.4, we can find some constant L; > 0 such that

L.
| Rmg, )] < 7] on Byw(po,2j) foral tel0,7], i>1

As K;%(t) >0, By,0)(po;25) C By,1)(po,2j) for all t > 0. We conclude that

|Rmyg, | < on By 0)(po,2j) forall te(0,7], i>1 (3.15)

Lj
t
On the other hand, by the result of Proposition 3.3.2, there exists a collection of

diffeomorphism ¢; : By(po, j) — M, onto its image, and [ € N such that

for >0 ,m=0,1,2 on By(py,j) (3.16)

V" (650i0) ~ 9l < 5.

When m = 0, if we choose a coordinate at p € U such that, g.,(p) = du and
59:(0)ap(p) = Aadap, then (3.16) implies

1
(A —1)2< 708 By(po,j) for i>1

which implies

)
g < 07g:(0) < 79 on By(po,j) ,forall i>1. (3.17)

FNRSY

We now claim that under (3.16), indeed we have ¢;(By(po, 7)) C By, (0)(po, 27) for
all @ > [.

Let © € By(po,j) and 7 : [0,1] — U be the minimal geodesic from py to .
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¢; 0 :[0,1] = M; is a curve from ¢;(pg) = po to ¢;(z).

Hovon) = [ /a0t a7
_ /0 ' JE RO s
< \/g /0 1 V(v A)ds < 2.
It implies dy,o)(po, ¢i(7)) < 2j.

Now, we estimate the curvature of ¢;(0) around the soul point py. For simplicity,

we denote ¢7¢;(0) by h in the following steps.
|Rm(R) s — Bm(g)sjmly < C(n)[[PVIVh], + Vh[;] < C(n)
So, by (3.16) and uniformly equivalent of norm as stated above,

| Bm(7:(0))

610:0) = [Bm(h)|n < C'(n)|Rm(h)],

< C'[[Bm(h) — Rm(g)ly + [Rm(g)l,]

< C"(n,g,j) for i>1 on By(po,Jj)
Noticed that the above constant C” depends on n and sup{|Rm(g)| : = €
By(po,7)} only. In particular, we can find » > 0 small enough such that

| 2m(g:(0)) -

gy <r7? for i>1 on  ¢(By(poj)). (3.18)

Applying Corollary (3.2) in [2] to each By, o) (p,r) where p € ¢;(By(po,j)). We
deduce that there exists f/j > 0 such that

|Rmg, | < Lj on  ¢;(By(po,j)) forall tel0,7], i>I.

Here flj depends on C” and L; only. After pulling back to B,(po, j) through ¢;,

we get

|Rm(¢7g:(t))| < L; on  By(po,j) forall tel0,7], i>1
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Combining this with extension of Shi-estimates, see [21].we reach furthermore
IV*Rm(6;g:(t)| < Lix on  By(po,j) forall te(0,7], i>1.

Here the connection and norm are calculated with respect to the metric ¢} g;(t).

It remains to prove that the metrics ¢fg;(t) on B,y(po,j) have all space and
time derivatives uniformly bounded.

Suppose it is true, one can apply Arzela-Ascoli-Theorem to deduce that after
passing to a subsequence, ¢fg;(t) converges to goo(f) in the C*° topology on
By(po, j) x[0,7] € M xR. Doing this for each j € N and apply the usual diagonal
sequence argument, we can obtain a limit metric g (¢#) which is a solution of the
Ricci flow on M with initial metric g (0) = g.

Because of the equation of Ricci flow, it suffices to show that the metrics

@ gi(t) on By(po, j) have all space derivatives uniformly bounded.
For simplicity, we denote ¢} g;(t) by g(t) in the following steps. We will illustrate
the case of 1st order derivative. The higher order case is similar. Noted that
the curvature of g(¢) is bounded by a constant L; on B,(po,7). The metrics
g(t),t € [0, 7] are uniformly equivalent to g on By(po, j).

In general, we have

VRm = VRm+ (V — V)% Rm = VRm+ g(t)~  Vg(t) * Rm

where V denotes the connection induced by the metric g.

Combining this with the above estimates, we conclude that

IVRml|, < c(n,j) +c(n,§)|Vg(t)],
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Thus, from the Ricci flow equation and above equality,
9 [9(0)” = 24Tg(0), ~29 Ricg(1))
< C(n)|Vy(t)|[VRm(g(1))|
< Ci(n, 5)|Vg(t)] + Caln, j)IVg(t) |
< Cs(n, )IVg(t)]* + Ca(n, 5)
Here, the norm is calculated with respect to the metric g.

So |V¢igi(t)|, is bounded by a constant depending on 7, j and 7 but independent

of 7. The higher order derivatives cases are similar. ]

The completeness follows from the next Lemma.

Lemma 3.6.2. There exists L' > 0 such that for all v > 0 and t € [0, 7] ,

By ty(Po; 1) C By (po, 7 + L't).
Proof. By theorem 3.1 in [2], there exists L independent of i such that
|Ric(gi(t))|(z,t) <LVt €[0,7], x € By,1)(po, 1)

Let g € M , t € [0,7]. Let ¢(s) be a minimal unit speed geodesic in (M;, g;(¢)
from pg to gq. If ¢ is a conjugate point of p, we can consider g, on ¢(s) which
converge to ¢q. So without loss of generality, we assume ¢ is not a conjugate point

of p. We now estimate the left derivative of r;(t) = dg,«)(po, q) as follows.
d ri(t) . , ,
i) = = [ Ricy(¢(s). ¢ (s))ds

d
If r;(t) <1, then %ri(t) > —L. Otherwise, let {e;}" ; be a orthonormal vector at
q where e; = ¢/(r;(t)). We extend {e;} along c(s) to {E;} by parallel translation.
Let {V;} be Jocabi field along ¢(s), s € [0, 1] where V;(0) =0, V;(1) = E;(1). Let
Z;(s) be a vector field along ¢(s) where
Vi(s) ifs€[0,1]

Ei(s) if s e [1,ri(t)].

69
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Then,

ri(t) nooprit)
_/ Ricgi(t)(cl(s)’ c(s))ds = Z/ |VC’EJ'|2 - Ricgi(t)(El’ E;, Ej, Ey)
1 =N

=> 1.(Z;,2;) = > 1(Z;, %)
P =1

where I,.(X, X), I (X, X) are the index form of vector field X along the geodesic
c(s) and c[p 1j(s) respectively. We estimate two terms separately. Since Z;(0) = 0

and Z;(r;(t)) L e;, by index lemma, we have
1.(Z, Z;) = 1.(J;, J;)

where J;(s),s € [0,7;(t)] is the Jocabi field at which J;(0) = 0, J;(r;(t)) = e;.
Hence, by second variational formula with the fact that ¢(s) is minimal, we con-
clude that

1.(2,,2;) > I(J;, J;) > 0.

On the other hand,
> N2, Z) =Y 1i(Vi, Vi) = Dy,
j=1 j=1
By Laplacian comparison theorem and the fact that K, > 0,
Agi(t)dgi(t) < Ad(l)=n-—1.

Thus, we have

d
Eri(t) >—-L—(n—1)=-L"

Consequently, we can conclude that for all ¢ € M,
dg;0)(Po; @) = dg,y(Po; @) = dy,0)(po,q) — L't
where L’ is independent of 7 and ¢. And this implies for all R > 0,7 € N,

Bgi(O) (po, R) C Bgi(t) (po, R) C Bgi(O) (p(), R+ th).
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Taking 7 — oo, we yield the result.
Furthermore, let {p,}2; be a cauchy sequence in (M, g(t)),t € [0,7]. There
exists R > 0 such that

Pn € Byo.ty(po, R) C By, 0)(po, R+ L't)
which implies that there exists p € (M, go(0)) such that dg__(o)(pn,p) — 0. Thus,

dgoo(t)(pn7p) S dgoo(O)(pTHp) — 0.

Thus (M, goo(t)) is complete for all ¢ € [0, 7]. O
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