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Abstract

In this thesis, we will discuss some results which are related to Ricci flow on

a complete noncompact manifold with possibly unbounded curvature.

In the first part, we will discuss the result on the short time existence of Ricci

h-flow on a complete noncompact manifold M by M. Simon [16]. The result is

as follows: if the metric g0 is 1 + ε(n) fair to the metric h which has bounded

curvature, then Ricci h-flow exists on M with initial metric g0. In order to ob-

tain the result, one first consider a compact domain D and obtain a solution to

the initial and boundary value problem. After some derivation of local a priori

estimates for its derivatives. a solution of the Ricci h-flow on the whole manifold

will be constructed.

In the second part, we will study the result on the short time existence of

Ricci flow on a complete noncompact manifold with positive complex sectional

curvature by E. Cabezas-Rivas and B. Wilking [10]. By considering the doubling

of convex sets obtained in the Cheeger-Gromoll exhaustion and solving the initial

value problem for the Ricci flow on these closed manifolds, a sequence of closed

Ricci flows on a fixed time interval with positive complex sectional curvature is

obtained. A curvature estimate around the soul point is then derived. This en-

ables one to obtain a limit solution on the whole manifold.



摘要 
 

在這篇畢業論文中，我們將討論兩個關於在無曲率上限的非緊且完備黎曼流

形上的里奇流的結果。 

在第一部分中，我們會先探討里奇 𝒽 流在非緊且完備的黎曼流形上的存在

結果。這結果是由M.Simon[16]在 2002年證明的。他證明了在任意一個非緊且完

備的 n 維黎曼流形上，而流形上有一度量 𝒽 ，且 𝒽 的曲率為有限數值。若果流

形上有另一度量𝔤0，而𝔤0並無曲率上限條件。只要其滿足與 𝒽, ϵ(n) fair 的條件，

則以 𝔤0 為初度量的里奇 𝒽 流 𝔤(t) 存在，並且當 t > 0 時，其曲率為有限。他首先

在流形上的任一緊集上求出一里奇 𝒽 流的 Dirichlet 解。透過得出對其導數的先

驗估計，可以從而得出一個在其流形上的里奇 𝒽 流解。 

而在第二部分中，我們將探討 Wilking 和 CABEZAS-RIVAS [10]的結果。他們

證明了在任意一個非緊且完備的 n維黎曼流形中，若其度量 𝔤 的複截面曲率為正

數，則以 𝔤 為初度量的里奇流 𝔤(t) 存在。他們利用了 Cheeger-Gromoll 的凸窮舉

集，並且考慮以其凸集建構的二重覆蓋。在該緊集上求一里奇流解，而且其解的

時間區間與該凸集無關。透過估計其曲率上限，我們可以求得在整個黎曼流形上

以 𝔤 為初度量的里奇流解。 
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Chapter 1

Introduction

In this thesis, we consider a evolution equation to deform the metric on any

n-dimensional Riemannian manifold (M, g0):
∂

∂t
gij = −2Rij,

g(0) = g0,
(1.1)

where Rij is the Ricci curvature of M .

In [26], Hamilton introduced this geometric flow (called Ricci flow) and proved

that every compact three manifold with positive Ricci curvature admitting a met-

ric of constant positive sectional curvature. The Ricci flow has then been proved

to be very useful in the research of differential geometry. The first important

thing which we have to concern is its short time existence. In the case where

M is a compact Riemannian manifold, Hamilton [26] proved that for any C∞

initial metric g0, Ricci flow equation has a unique solution for a short time us-

ing Nash-Moser inverse function theorem. Later on, Dennis DeTurck [9] gave a

elegant proof on the existence and uniqueness of Ricci flow on closed manifold in

which he modified the Ricci flow into a nonlinear parabolic equation. Therefore

the short time existence problem is solved in the compact case. But the complete

noncompact case is more difficult.

In [9], in stead of considering the Ricci flow equation, DeTurck considered the

6
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Ricci-Deturck flow which is a strictly parabolic system. The Ricci-Deturck flow

is the solution of the following evolution equation:
∂

∂t
gij = −2Rij +t ∇iWj +t ∇jWi,

g(0) = g0,
(1.2)

where W = W (g) is defined by Wj = gjkg
pq(gΓkpq −h Γkpq) and h is a fixed back-

ground metric on M . After solving the Ricci-Deturck flow on M , he pulled it

back through a diffeomorphism and obtain a Ricci flow on M .

Following the idea of DeTurck, Shi [32] considered open manifold (complete

noncompact) (M, g0) with bounded curvature. He evolved (M, g0) by the same

evolution equation as in (1.2) with h = g0. He showed that the Ricci-DeTurck

flow exists on M which can be pulled back to a Ricci flow on M . Thus, the short

time existence problem is solved if (M, g) has bounded curvature.

Due to the work by Shi, we attempt to remove any restriction on curvature

bounds for open manifolds. For non-compact 2-manifolds (possibly incomplete

and with unbounded curvature), this was settled by Giesen and Topping in [11],

using the idea from [22]. But for n ≥ 3, it is difficult to imagine how to construct

a solution of Ricci flow. And it seems to be necessary to requre more informations

about the curvature.

In chapter 2, we will present the result by M. Simon in [16] in which he

considered (M, g0) with unbounded curvature but g0 is C0-close to a background

metric h with bounded curvature in the following sense.

Definition 1.0.1. Let M be a complete manifold and g a C0 metric , and δ ∈

[1,+∞), a given constant. A metric h is said to be δ-fair to g, if h is C∞ and

there exists a constant k0 such that

sup
x∈M
|Riem(h)(x)|h = k0 < +∞, (1.3)

and

1

δ
h(p) ≤ g(p) ≤ δh(p), ∀p ∈M. (1.4)
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He evolved (M, g0) by the same equation in (1.2) with h being the fixed

background metric. He called it the Ricci h-flow. He proved that if the initial

metric g0 is 1 + δ fair to h for sufficiently small δ(n) > 0, then the Ricci h-flow

exists on M for short time t ∈ [0, T (n, k0)]. Later on, he proved that the Ricci

h-flow can be pulled back to a Ricci flow on Rn with h being the flat metric, see

[19].

In chapter 3, we will discuss the result by B. Wilking and E. Cabezas-Rivas in

[10] in which they considered open manifolds with nonnegative complex sectional

curvature.

Here, we explain the meaning of complex sectional curvature on (M, g). Con-

sider its complexified tangent bundle TCM = TM ⊗ C, we extend the curvature

tensor Rm and its metric g at p to C−multilinear maps. The complex sectional

curvature of a 2-dimensional complex subspace σ of TC
p M is defined by

KC(σ) = Rm(u, v, ū, v̄),

where u and v form an unitary basis for σ. And we say that M has nonnegative

complex sectional curvature if KC ≥ 0.

In [10], B. Wilking and E. Cabezas-Rivas constructed a Ricci flow solution on

open manifold (M, g) with KC
g ≥ 0 without any assumptions on the curvature

upper bounds. The result is based on the work of Cheeger, Gromoll in [13]. They

proved that for open manifolds with Kg ≥ 0, it admits an exhaustion by convex

set Cl. It enables us to construct a Ricci flow with nonnegative complex sectional

curvature on the closed manifold formed by gluing two copies of Cl along the

common boundary and whose initial metric is the natural singular metric on the

double. By passing to limit, the following theorem can be obtained.

Theorem 1.0.2. Let (Mn, g) be an open manifold with nonnegative (and possibly

unbounded) complex sectional curvature. Then there exists a constant T depend-

ing on n and g such that (1.1) has a smooth solution on the interval [0, T ], with

g(0) = g and with g(t) having nonnegative complex sectional curvature.
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B. Wilking and E. Cabezas-Rivas also showed that the maximal existence

time of Ricci flow can be estimated from below by the supremum of volume of

balls in (M, g).

Corollary 1.0.3. In each dimension n, there is a universal constant ε(n) > 0

such that for each complete manifold (Mn, g) with KC
g ≥ 0, the following holds:

If we put

τ = ε(n) · sup

{
volg(Bg(p, r))

rn−2
: p ∈M, r > 0

}
∈ (0,∞],

then any complete maximal solution of Ricci flow (M, g(t)), t ∈ [0, T ) with KC
g(t) ≥

0 and g(0) = g satisfies τ ≤ T .



Chapter 2

h Ricci flow

2.1 Introduction to h-Ricci flow

In this chapter, we study the Ricci h-flow which is a variant of the Ricci-

Deturck flow. For a Riemannian manifold (M, g0) with a fixed background metric

h, we define the h-flow with initial data g0 by
∂

∂t
gij = −2Rij +t ∇iWj +t ∇jWi,

g(0) = g0,
(2.1)

where the time dependent 1-form W = W (g(t)) is defined by

Wj = gjkg
pq(Γkpq − hΓkpq).

Here, Rij is the Ricci curvature of g(t) and t∇ stands for the connection induced

by the metric g(t). Γijk and hΓijk are the Christoffel symbols of the metrics g(t)

and h respectively.

Throughout this chapter, we will denote Rm and ∇ as the curvature tensor

of h and the connection induced by the metric h respectively.

10
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Lemma 2.1.1. In local coordinate, h-flow solves the evolution equation

∂

∂t
gij = gαβ∇α∇βgij − gαβgiphpqRjαqβ − gαβgjphpqRiαqβ

+
1

2
gαβgpq(∇igpα∇jgqβ + 2∇αgjp∇qgiβ − 2∇αgjp∇βgiq

− 2∇jgpα∇βgiq − 2∇igpα∇βgjq).

where ∇ is the connection induced by the metric h, R = Riem(h). In particular,

the evolution equation is a strictly parabolic system.

Proof. See Lemma 2.1 in [32].

We now show the relations between Ricci flow and the h-flow. Suppose

g(t), t ∈ [0, T ] solves h-flow, we consider a 1-parameter family of maps φt(x) :

M →M by the equation

 ∂
∂t
φt(p) = −W (φt(p), t)

φ0 = id,
(2.2)

If the equation (2.2) has a smooth solution φt on M × [0, T ] and remains dif-

feomorphism on [0, T ]. One can observe that the family of metrics g̃(t)
.
= φ∗tg(t)

is a solution to the Ricci flow. We compute as follows.

∂

∂t
(φ∗tg(t)) =

∂

∂s
|s=0(φ∗s+tg(t+ s))

= φ∗t (
∂

∂t
g(t)) +

∂

∂s
|s=0(φ∗s+t(g(t)))

= φ∗t (−2Ric(g(t) + LW (t)g(t)) +
∂

∂s
|s=0[(φ−1

t ◦ φt+s)∗φ∗t (g(t))]

= −2Ric(φ∗tg(t)) + φ∗t (LW (t)g(t))− L(φ−1
t )∗W (t)φ

∗
tg(t)

= −2Ric(φ∗tg(t)).

where LXg refers to the Lie derivative of metric g in the direction of X.
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In this chapter, we will prove the short time existence of h-flow in the case

that g0 is smooth and (1 + ε)-fair to the metric h with ε sufficiently small. We

define the fairness as follows.

Definition 2.1.2. Let M be a complete manifold and g a C0 metric , and δ ∈

[1,+∞), a given constant. A metric h is said to be δ-fair to g, if h is C∞ and

there exists a constant k0 such that

sup
x∈M
|Riem(h)(x)|h = k0 < +∞, (2.3)

and

1

δ
h(p) ≤ g(p) ≤ δh(p), ∀p ∈M. (2.4)

Remark : By the result of Shi, Theorem 1.1 in [32], if h0 is a smooth Riemannian

metric with bounded curvature k0, then there exists a constant T = T (n, k0) > 0

such that the Ricci flow h(t) with initial metric h0 exists on M for 0 ≤ t ≤ T .

It satisfies the following estimates. For each m ∈ N, there exists constants cm =

c(n,m, k0) > 0 such that

sup
x∈M
|∇mRijkl(x, t)|2 ≤

cm
tm
, 0 ≤ t ≤ T.

From the Ricci flow equation ,

∂

∂t
h(t) = −2Ric(h(t)), 0 ≤ t ≤ T,

It follows that

| ∂
∂t
hij|2 ≤ 4|Rij|2 ≤ 4n2c0, 0 ≤ t ≤ T,

This implies

e−2n
√
c0th(x, 0) ≤ hij(x, t) ≤ e2n

√
c0thij(x, 0),∀x ∈M, t ∈ [0, T ].
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For all ε > 0, we can find t0 = t0(ε, n, k0) > 0 small enough such that the new

metric h′(x) = h(x, t0) satisfies

1

1 + ε
h0(x) ≤ h′(x) ≤ (1 + ε)h0(x), ∀x ∈M

and

sup
x∈M
|h′∇mRiem(h′)(x)|2h′ ≤

cm
tm0

< +∞.

So, if h is (1 + δ)-fair to a metric g, then we can replace h by another smooth

metric h′ which is (1 + 2δ) fair to g ,and

sup
x∈M
|h′∇mRiem(h′)(x)|2h′ = kj < +∞,

So we can assume that h always fulfills such estimates.

2.2 Evolution equations of derivatives of g

In this section, we state the evolution equations for the derivatives of the

h-flow.

Lemma 2.2.1. Suppose g(t) is a solution of h-flow and h is 1 + ε(n) fair to g(t),

then in local coordinate, we have

∂

∂t
∇m

gab =gαβ∇α∇β∇
m
gab +

∑
i+j+k=m;i,j,k≤m

∇i
g−1 ∗ ∇j

g ∗ ∇k
Riem(h)

+
∑

i+j+k+l=m;i,j,k,l≤m

∇i
g−1 ∗ ∇j

g−1 ∗ ∇k+1
g ∗ ∇l+1

g, ∀m ∈ N

where here T ∗ S (T and S are tensors) refers to some trace with respect to the

metric h which results in a tensor of the appropriate type.

Proof. We prove it by induction on m.
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When m = 1, differentiate the evolution equation in Lemma (2.1.1).

∂

∂t
∇gab = ∇(gαβ∇α∇βgab)−∇(gαβgaph

pqRbαqβ + gαβgbph
pqRaαqβ)

+∇
[

1

2
gαβgpq(∇agpα∇bgqβ + 2∇αgbp∇qgaβ − 2∇αgbp∇βgaq − 4∇agpα∇βgbq)

]
= gαβ∇∇α∇βgab +∇gαβ∇α∇βgab +∇(g−1 ∗ g ∗ h ∗Rm)

+∇(g−1 ∗ g−1 ∗ ∇g ∗ ∇g)

= gαβ∇∇α∇βgab +∇g−1 ∗ ∇2
g +∇g−1 ∗ g ∗Rm+ g−1 ∗ ∇g ∗Rm

+ g−1 ∗ g ∗ ∇Rm+ g−1 ∗ ∇g−1 ∗ ∇g ∗ ∇g + g−1 ∗ g−1 ∗ ∇2
g ∗ ∇g.

By differentiating the equation gijgjk = δik, we have ∇ig
jk = −gjpgkq∇igpq. It

gives

∂

∂t
∇gab = gαβ∇∇α∇βgab +∇g−1 ∗ g ∗Rm+ g−1 ∗ ∇g ∗Rm+ g−1 ∗ g ∗ ∇Rm

+ g−1 ∗ ∇g−1 ∗ ∇g ∗ ∇g + g−1 ∗ g−1 ∗ ∇2
g ∗ ∇g.

By using Ricci identity on the first term, one can deduce that

gαβ∇∇α∇βgab = gαβ∇α∇∇βgab + g−1 ∗Rm ∗ ∇g

= gαβ∇α∇β∇gab + g−1 ∗ ∇(Rm ∗ g) + g−1 ∗Rm ∗ ∇g

= gαβ∇α∇β∇gab + g−1 ∗ ∇g ∗Rm+ g−1 ∗ g ∗ ∇Rm

So, we have

∂

∂t
∇gab = gαβ∇α∇β∇gab +

[
∇g−1 ∗ g ∗Rm+ g−1 ∗ ∇g ∗Rm+ g−1 ∗ g ∗ ∇Rm

]
+
[
g−1 ∗ ∇g−1 ∗ ∇g ∗ ∇g + g−1 ∗ g−1 ∗ ∇2

g ∗ ∇g
]
.

The case of m = 1 is true. Suppose it is true for m = p. That is

∂

∂t
∇p
gab =gαβ∇α∇β∇

p
gab +

∑
i+j+k=p;i,j,k≤p

∇i
g−1 ∗ ∇j

g ∗ ∇k
Rm

+
∑

i+j+k+l=p;i,j,k,l≤p

∇i
g−1 ∗ ∇j

g−1 ∗ ∇k+1
g ∗ ∇l+1

g.
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Differentiate the above equation. We obtain

∂

∂t
∇c∇

p
gab = ∇c(g

αβ∇α∇β∇
p
gab) +∇c

[ ∑
i+j+k=p,i,j,k≤p

∇i
g−1 ∗ ∇j

g ∗ ∇k
Rm

]

+∇c

[ ∑
i+j+k+l=p,i,j,k,l≤p

∇i
g−1 ∗ ∇j

g−1 ∗ ∇k+1
g ∗ ∇l+1

g

]

= ∇cg
αβ ∇α∇β∇

p
gab + gαβ∇c∇α∇β∇

p
gab

+

[ ∑
i+j+k=p+1,i,j,k≤p+1

∇i
g−1 ∗ ∇j

g ∗ ∇k
Rm

]

+

[ ∑
i+j+k+l=p+1;i,j,k,l≤p+1

∇i
g−1 ∗ ∇j

g−1 ∗ ∇k+1
g ∗ ∇l+1

g

]
.

Apply Ricci identity again on the second term, we obtain

gαβ∇c∇α∇β∇
p
gab = gαβ∇α∇β∇c∇

p
gab +Rm ∗ ∇p+1

g +∇Rm ∗ ∇p
g.

Together with the fact that ∇cg
jk = −gjpgkq∇cgpq, we get the desired equation.

∂

∂t
∇p+1

gab = gαβ∇α∇β∇
p+1

gab +

[ ∑
i+j+k=p+1,i,j,k≤p+1

∇i
g−1 ∗ ∇j

g ∗ ∇k
Rm

]

+

[ ∑
i+j+k+l=p+1;i,j,k,l≤p+1

∇i
g−1 ∗ ∇j

g−1 ∗ ∇k+1
g ∗ ∇l+1

g

]
.

By mathematical induction, result follows.

Thus, we have the evolution equation of the norm of derivatives of g(t).

Lemma 2.2.2. Suppose g(t) is a solution of h-flow and g(t) is 1 + ε(n) fair to

h, then in local coordinate, we have

∂

∂t
|∇m

g|2 ≤ gαβ∇α∇β|∇
m
g|2 − 2gαβ〈∇α∇

m
g,∇β∇

m
g〉

+ c(m,n, h)
∑

i+j≤m;i,j≤m

|∇i
g||∇j

g||∇m
g|

+ c(m,n, h)
∑

i+j+k+l=m+2;i,j,k,l≤m+1

|∇i
g||∇j

g||∇k
g||∇l

g||∇m
g|
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Here, the norm of tensor is with respect to the metric h.

Proof.

(
∂

∂t
− gαβ∇α∇β)|∇m

g|2 = 〈( ∂
∂t
− gαβ∇α∇β)∇m

g,∇m
g〉 − 2gαβ〈∇α∇

m
g,∇β∇

m
g〉,

Substitute the result of Lemma (2.2.1) into the above equation, together with the

fairness assumption, we obtain the result.

2.3 Zero order estimate of h-flow.

Before we prove the existence of Dirichlet solution, we first need some a priori

estimate of the solution. In this section, we will give zero estimate on the Dirichlet

solution.

Lemma 2.3.1. Let D be a compact region in M . Let g0 be a C∞(D) metric and

h, a metric on M which satisfies

g0 ≥
h

1 + δ
.

Let g(t), t ∈ [0, T ] be a C∞(D × [0, T ]) solution to the h-flow with Dirichlet

boundary conditions g|∂D(·, t) = g0, g(0) = g0. Then for every σ > 0, there exists

an S = S(n, k0, δ, σ) > 0 such that

g(t) ≥ h

(1 + δ)(1 + σ)
,∀t ∈ [0, T ] ∩ [0, S].

Proof. We define a function φ : M × [0, T ]→ R by φ(x, t) = gi1j1hj1i2 ..g
imjmhjmi1

(m is a integer to be chosen). At a fixed point p ∈ M , we may always find a

local coordinates around p, such that, hij(p) = δij and gij = δijλi(p). In this local

coordinate, we have φ(x, t) =
n∑
i=1

1

λmi
.

Noted that it satisfies

sup
(x,t)∈D×{0}∪∂D×[0,T ]

φ(x, t) ≤ n(1 + δ)m.
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∂

∂t
φ(x, t) = gi1j1hj1i2 ...hjk−1ik(

∂

∂t
gikjk)hjkik+1

...gimjmhjmi1

= gi1j1hj1i2 ...hjk−1ik(−gikqgpjk
∂

∂t
gpq)hjkik+1

...hjmi1 .

In our preferred coordinate,

∂

∂t
φ(x, t) = − m

λm+1
i

∂

∂t
gii

= − m

λm+1
i

{gαβ∇α∇βgii −
2λi
λα

Riαiα

+
1

2λαλp
[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)

2 − 4∇igpα∇αgip]}

=
−m

λm+1
i λα

∇α∇αgii +
2m

λmi λα
Riαiα

− m

2λm+1
i λαλp

[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)
2 − 4∇igpα∇αgip].

∇βφ = gi1j1 ...(∇βg
ikjk)...hjmi1 .

gαβ∇α∇βφ

= gαβgi1j1 ...(∇βg
ikjk)...(∇βg

iljl)...hjmi1 + gαβgi1j1 ...(∇α∇βg
ikjk)...hjmi1

=
m

λα
(∇αg

ij)2(
m−2∑
k=0

1

λm−2−k
i λkj

) +
m

λm−1
i λα

∇α∇αg
ii

=
m

λα
(∇αg

ij)2(
m−2∑
k=0

1

λm−2−k
i λkj

) +
m

λm−1
i λα

(−gipgiq∇α∇αgpq + 2gipgilgqk∇αgpq∇αglk)

=
m

λα
(∇αg

ij)2(
m−2∑
k=0

1

λm−2−k
i λkj

) +
m

λm−1
i λα

[
−1

λ2
i

∇α∇αgii +
2

λ2
iλα

(∇αgip)
2].
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(∂t − gαβ∇α∇β)φ

= − m

2λm+1
i λαλp

[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)
2 − 4∇igpα∇αgip]

− m

λα
(∇αg

ij)2(
m−2∑
k=0

1

λm−2−k
i λkj

) +
2m

λmi λα
Riαiα −

2m

λm+1
i λαλp

(∇αgip)
2)

≤ − m

2λi+1
i λαλp

[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)
2

− 4∇igpα∇αgip + 4(∇αgip)
2] +

2m

λmi λα
Riαiα

≤ − m

2λi+1
i λαλp

[(∇igpα)2 + 2∇αgip∇pgiα − 4∇igpα∇αgip + 2(∇αgip)
2]

+
2mk0

λmi λα

≤ − m

2λi+1
i λαλp

[(∇igpα)2 + 2∇αgip∇pgiα − 2∇igpα∇αgip

− 2∇igpα∇pgiα + (∇αgip)
2 + (∇pgiα)2] +

2mk0

λmi λα

≤ 2mk0

λmi λα
− m

2λi+1
i λαλp

(−∇igpα +∇αgip +∇pgiα)2

≤ Cφ1+ 1
m

where the constant C = C(m, k0, n) = 2mnk0.

We now define f : M × [0, T ]→ R by f = φ
−1
m ,

∂tf = − 1

m
φ
−1−m
m ∂tφ

gij∇i∇jf = − 1

m
gijφ

−1−m
m ∇i∇jφ+

m+ 1

m2
φ
−1−2m
m gij∇iφ∇jφ

(∂t − gij∇i∇j)f

= − 1

m
φ
−1−m
m (∂t − gij∇i∇j)φ+

m+ 1

m2
φ
−1−2m
m gij∇iφ∇jφ

≥ −C
m

+ (m+ 1)φ
1
m gij∇if∇jf.

By parabolic maximum principle, this implies that ∀(x, t) ∈ D × [0, T ]

f +
Ct

m
≥ inf

D×{0}∪∂D×[0,T ]
f

≥ 1

supD×{0}∪∂D×[0,T ](
∑n

i=1
1
λmi

)
1
m

≥ 1

n
1
m (1 + δ)
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And hence, we have on D × [0, T ]

φ(x, t) =
n∑
i=1

1

λmi
≤ [

1

n
1
m (1 + δ)

− 2nk0t]
−m,

It implies that, for any i ∈ {1, 2, ...n}, (x, t) ∈ D × [0, T ],

λi(x, t) ≥
1

n
1
m (1 + δ)

− 2nk0t.

For any given σ > 0, choose m ∈ N large enough so that (1 +
σ

2
) > n

1
m and

choose S(n, k0, σ, δ) =
1 + σ

2nk0(1 + δ)(1 + σ/2)
> 0, then we have

λi(x, t) ≥
1

(1 + δ)(1 + σ)
, ∀(x, t) ∈ D × [0, S].

We wish to obtain bounds from above for g(t) in terms of h.

Lemma 2.3.2. There exists a constant ε̃ = ε̃(n) > 0 such that the followings

hold:

Let D be a compact region in M , and g0 be a C∞(D) metric and h a metric on M

which satisfies h ≤ g0 ≤ (1 + δ)h (δ < ε̃). Let g(t), t ∈ [0, T ] be a C∞(D× [0, T ])

solution to the h-flow with Dirichlet boundary conditions g|∂D(·, t) = g0(·), g(0) =

g0. Then there exists S = S(n, k0, δ) > 0 such that

g(t) ≤ (1 + 2δ)h,∀t ∈ [0, T ] ∩ [0, S].

Proof. Let 1 > ε̃ = ε̃(n) > 0 be a constant such that

log
1 + 2δ

1 + δ
<

log 2n

1168n5
, ∀δ < ε̃. (2.5)

Choose m ∈ N such that

log 2n

log(1 + 2δ)− log(1 + δ)
≤ m ≤ 2 log 2n

log(1 + 2δ)− log(1 + δ)
. (2.6)
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Let α(m) =
1

m
. By the previous theorem, there exists an S = S(n, k0, α) > 0

such that

g(t) ≥ h

1 + α
,∀t ∈ [0, T ] ∩ [0, S].

We define a function G : M × [0, T ]→ R by G = hi1j1gj1i2 ...h
imjmgjmi1 .

From the fact that h is 1 + δ fair to g0, we can see that

n ≤ G(x, 0) ≤ n(1 + δ)m

And for (1 + δ)m − 1
2n
G > 0, we define F =

1

(1 + δ)m − 1
2n
G

.

Clearly, we know that

(1 + δ)m − 1

2n
G(x, 0) ≥ 1

2
(1 + δ)m, (2.7)

and hence F (x, 0) <∞ , is well defined at t = 0.

Since D is compact, and g(x, t) is a priori smooth, there is T ′ ∈ [0, T ] ∩ [0, S],

such that F (x, t) is well defined for all t ∈ [0, T ′), and if supD×[0,T ′) F (x, t) <

∞, then [0, T ′] = [0, T ] ∩ [0, S]. Since F is well defined on [0, T ′), we see that

(1 + δ)m− 1
2n
G(x, t) > 0 for all t ∈ [0, T ′). In our preferred coordinate, it implies

λi ≤ (2n)
1
m (1 + δ), ∀i ∈ {1, 2, ...n},∀t ∈ [0, T ′).

Now we evaluate the evolution equation for F .

∂

∂t
G = hi1j1gj1i2 ...h

iljl(
∂

∂t
gjlil+1

)hil+1jl+1 ...gjmi1

= mλm−1
i

∂

∂t
gii

= mλm−1
i {gαβ∇α∇βgii −

2λi
λα

Riαiα

+
1

2λαλp
[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)

2 − 4∇igpα∇αgip]}.
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∇βG = hi1j1gj1i2 ...(∇βgjlil+1
)...gjmi1 .

gαβ∇α∇βG

= hi1j1gj1i2 ...(g
αβ∇α∇βgjlil+1

)...gjmi1 + gαβhi1j1gj1i2 ...(∇αgjkik+1
)...(∇βgjlil+1

)...gjmi1

= mλm−1
i (gαβ∇α∇βgii) +

m

λα
(∇αgij)

2(
m−2∑
k=0

λm−2−k
i λkj ).

(
∂

∂t
− gαβ∇α∇β)G

= mλm−1
i

{
gαβ∇α∇βgii −

2λi
λα

Riαiα

+
1

2λαλp
[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)

2 − 4∇igpα∇αgip]
}

−mλm−1
i (gαβ∇α∇βgii)−

m

λα
(∇αgij)

2(
m−2∑
k=0

λm−2−k
i λkj )

= −2mλmi
λα

Riαiα −
m

λα
(∇αgij)

2(
m−2∑
k=0

λm−2−k
i λkj )

+
mλm−1

i

2λαλp
[(∇igpα)2 + 2∇αgip∇pgiα − 2(∇αgip)

2 − 4∇igpα∇αgip].

≤ 2mk0

λα
G− m

λα
(∇αgij)

2(
m−2∑
k=0

λm−2−k
i λkj ) +

mλm−1
i

2λαλp
[3∇αgip∇pgiα + 2(∇igαp)

2]

Using the fact that ,

1

1 + α
≤ λi ≤ (2n)

1
m (1 + δ), on [0, T ′).

We conclude that

(
∂

∂t
− gαβ∇α∇β)G

≤ 2mnk0(1 + α)G+m(1 + α)2|∇g|2
[
6n(1 + α)(1 + δ)m − m− 1

(2n)1/m(1 + δ)(1 + α)m
]
.

By using (2.5), (2.6), it implies that

1

2
log(1 + δ) < log

1 + 2δ

1 + δ

73n(1 + δ)m < 73n(16n4) = 1168n5 <
log 2n

log 1+2δ
1+δ

≤ m
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Thus, we conclude that

1 + 6n(2n)
1
m (1 +

1

m+ 1
)m+1(1 + δ)m+1 < 1 + 6n(2)(3)(2)(1 + δ)m < 73(1 + δ)m ≤ m.

6n(1 + α)(1 + δ)m <
m− 1

(2n)1/m(1 + δ)(1 + α)m

So we get

(
∂

∂t
− gαβ∇α∇β)G ≤ 2mnk0(1 + α)G.

(
∂

∂t
− gαβ∇α∇β)F =

F 2

2n
(
∂

∂t
− gαβ∇α∇β)G− F

n
gαβ∇βG∇αF

≤ 2mnk0(1 + α)(1 + δ)mF 2 − F 3

2n2λα
(∇αG)2

≤ 2mnk0(1 + α)(1 + δ)mF 2.

By parabolic maximum principle and (2.7) , we obtain

F (·, t) ≤ a

1− bt
,∀t ∈ [0, T ′). (2.8)

where a = sup
x∈D

F (x, 0), b = 2mnk0(1 + α)(1 + δ)ma.

Without loss of generality, we assume that S ≤ 1

2b
, which implies that bt ≤

1

2
, ∀t ∈ [0, T ′). By mean of (2.7), we obtain

F (·, t) ≤ 4

(1 + δ)m
,∀t ∈ [0, T ′),

And hence T ′ = min(S, T ).

Combining with (2.6), we get

λi ≤ (2n)
1
m (1 + δ) ≤ (1 + 2δ), ∀t ∈ [0, T ] ∩ [0, S].

Combing the above two lemmas, we can conclude the following theorem.
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Theorem 2.3.3. There exists a ε̃(n) > 0 such that the followings hold:

Let D be a compact region in M , and g0 be a C∞(D) metric and h, a metric on

M which satisfies
1

1 + δ
h ≤ g0 ≤ (1 + δ)h where δ(δ + 2) ≤ ε̃. Let g(t), t ∈ [0, T ]

be a C∞(D× [0, T ]) smooth solution to h flow with Dirichlet boundary conditions

g|∂D(·, t) = g0(·), g(0) = g0. Then there exists S = S(δ, n, k0) such that

1

(1 + 3δ)
h ≤ g(t) ≤ (1 + 3δ)h, ∀t ∈ [0, T ] ∩ [0, S].

Proof. First note that if g(t) is a solution to h-flow, then (1 + δ)g(
t

1 + δ
) is also

a solution to h-flow, with initial data (1 + δ)g0. Let g̃(t) = (1 + δ)g(
t

1 + δ
),

g̃0 = g̃(0) = (1 + δ)g0 satisfies h ≤ g̃(0) ≤ (1 + δ)2h. From the Lemma 2.3.2, we

may find an S = S(n, k0, δ) > 0 so that

g̃(t) ≤ (1 + 4δ + 2δ2)h, ∀t ∈ [0, (1 + δ)S] ∩ [0, (1 + δ)T ].

which will imply

g(t) ≤ 1 + 4δ + 2δ2

1 + δ
h ≤ (1 + 3δ)h, ∀t ∈ [0, S] ∩ [0, T ].

By Lemma 2.3.1, we can find S = S(n, k0, δ) > 0 such that

1

(1 + 3δ)
h ≤ g(t) ≤ (1 + 3δ)h, ∀t ∈ [0, S] ∩ [0, T ].

.

2.4 A priori interior estimates for the gradient

and higher derivatives of g.

In order to prove the existence of Dirichlet solutions on arbitrary compact set

D, we need some a priori estimate on the derivatives of g(t). After that, we wish

to let D go to infinity on M to get a limit solution on M . To do this, we need

to control gij(x, t) locally. In this section, we will give some a priori estimates on
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the gradient and higher derivatives of g(t).

Lemma 2.4.1. Let g(t),t ∈ [0, S] be a C∞(D× [0, S]) solution to the h flow with

Dirichlet boundary conditions g|∂D(·, t) = g0(·), g(0) = g0, for some h which is

1 + ε(n) fair to g(t), ∀t ∈ [0, S] (ε(n) to be specified in the proof below). Then

sup
x∈D
|∇g(x, t)|2 ≤ c(n, h,D, g0|D), ∀t ∈ [0, S].

The norm is with respect to the background metric h.

Proof. Let φ : M × [0, S]→ R by,

φ(x, t) = gj1i1h
i1j2gj2i2h

i2j3 ...gjmimh
imj1 .

m = m(n) is a integer to be chosen. Choose ε(n) =
1

m(n)
.

We may choose a coordinates at point p such that hij(p) = δij, g(p)ij = λi(p, t)δij.

In this coordinate, φ(x, t) = λm1 + ...λmn . Since (1− ε)h(x) ≤ g(x, t) ≤ (1 + ε)h(x),

we have

1− ε ≤ λi ≤ 1 + ε, ∀(x, t) ∈M × [0, S].

Compute the evolution equation of φ(x, t) as before, we will obtain the following

equation.

(
∂

∂t
− gαβ∇α∇β)φ ≤ −m

λα
(∇αgij)

2(
m−2∑
k=0

λm−2−k
i λkj ) +

2mk0

λα
φ

+
mλm−1

i

2λαλp
[3∇αgip∇pgiα + 2(∇igαp)

2]

≤ 2mnk0

1− ε
(1 + ε)m

+

[
3m(1 + ε)m−1

(1− ε)2
− m(m− 1)(1− ε)m−2

1 + ε

]
|∇g|2

≤ 12mnk0 −
m2

8
|∇g|2.

Now define ψ : M × [0, S]→ R by ψ = (φ+ a)|∇g|2, a(n) > 0 is a constant to be

chosen.
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By Lemma (2.2.2), we have

(
∂

∂t
− gαβ∇α∇β)|∇g|2 = −2gαβ〈∇α∇g,∇β∇g〉+ g−1 ∗Rm ∗ ∇g ∗ ∇g

+∇Rm ∗ g ∗ g−1 ∗ ∇g + g−1 ∗ g−1 ∗ ∇g ∗ ∇g ∗ ∇∇g

+ g−1 ∗ g−1 ∗ g ∗ ∇g ∗ ∇g ∗Rm

≤ −2gαβ〈∇α∇g,∇β∇g〉+ C|∇g|2|∇∇g|

+ C|∇g|2 + C|∇g|4 + C|∇g| ( C = C(n, k0, k1, ε) )

≤ −|∇2
g|2 + C|∇g|2|∇2

g|

+ C|∇g|2 + C|∇g|4 + C|∇g|. (provided ε(n) < 1.)

By using Young’s inequality, we can obtain

(
∂

∂t
− gαβ∇α∇β)|∇g|2 ≤ −1

2
|∇2

g|2 + C2|∇g|4 + C3.

Where C2, C3 depends on n, k0, k1 only.

(
∂

∂t
− gαβ∇α∇β)ψ

= (φ+ a)(
∂

∂t
− gαβ∇α∇β)|∇g|2 + |∇g|2(

∂

∂t
− gαβ∇α∇β)φ− 2gij∇iφ∇j|∇g|2

≤ (φ+ a)(−1

2
|∇2

g|2 + C2|∇g|4 + C3) + |∇g|2(C1 −
m2

8
|∇g|2)− 2gij∇iφ∇j|∇g|2

≤ −φ+ a

2
|∇2

g|2 + C2(φ+ a)|∇g|4 + C3(φ+ a) + C1|∇g|2 −
m2

8
|∇g|4 − 2gij∇iφ∇j|∇g|2

−2gij∇iφ∇j|∇g|2 = −4mλm−1
k

λi
∇igkk〈∇j∇g,∇g〉

≤ C4m(1 + ε)m−1

1− ε
|∇2

g||∇g|2 ( C4 = C4(n) )

≤ 2C4m|∇
2
g||∇g|2

≤ 1

2
(a+ φ)|∇2

g|2 +
2m2(C4)2|∇g|4

a+ φ

Choose a(n) large enough so that
2m2(C4)2

a+ φ
≤ m2

32
. And also choose m = m(n)
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large so that C2(φ+ a) ≤ m

16
≤ m2

16
and

1

ε̃(n)
< m. Then we can deduce that

(
∂

∂t
− gαβ∇α∇β)ψ ≤ −m

2

32
|∇g|4 + C1|∇g|2 + C5(n, k0, k1)

≤ −1

2
ψ2 + c0(n, k0, k1)

≤ c0 (2.9)

From the maximum principle we obtain that

sup
D×[0,S]

(ψ − c0t) ≤ sup
∂D×[0,S]∪D×{0}

ψ (2.10)

Applying Lemma 3.1, VI, §3 in [18] to the evolution equation of h-flow, we get

sup
∂D×[0,S]

|∇g| ≤ c(n, h, ∂D), in view of the a priori parabolicity. Together with

(2.10), the result follows.

Furthermore, we can also estimate the derivatives of g(x, t), supD×[0,T ] |∇
m
g(x, t)|,

on compact set D by a constant depending only on m,n, h and g0|D. We sum-

marize in the following theorem.

Lemma 2.4.2. Let g(t),t ∈ [0, S] be a C∞(D× [0, S]) solution to the h flow, for

some h which is 1 + ε(n) fair to g(t), ∀t ∈ [0, S] (ε(n) to be specified in the proof

of Lemma 2.4.1) with Dirichlet boundary conditions g|∂D(·, t) = g0(·), g(0) = g0.

Then

sup
x∈D
|∇m

g(x, t)|2 ≤ C̃(m,n, h,D, g0|D), ∀t ∈ [0, S].

The norm is with respect to the background metric h.

Proof. By Lemma 2.4.1, we get that

sup
x∈D
|∇g(x, t)|2 ≤ c(n, h,D, g0|D), ∀t ∈ [0, S].

Thus, if the h-flow is written in the form of

− ∂

∂t
gkl + gij∇i∇jgkl = fkl,
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then fkl is bounded uniformly by a constant depending only on k0, n, h, g0|D and

D. Using Theorem 9.1, Ch IV, §9 in [18], we have W 2,1
q estimates for g(t) with

||g||W 2,1
q (D×(0,S)) ≤ c(k0, n, h, g0|D, D, q) , for all integer q.

Thus, by Sobolev imbedding Theorem, we get that

||∇g||Cα,α/2(D×(0,×S)) ≤ c(k0, n, h, g0|D, D, α).

By a priori parabolicity, we can deduce that

sup
x∈D
|∇m

g(x, t)|2 ≤ C̃(m,n, h,D, g0|D), ∀t ∈ [0, S].

Next, we give the local estimates of derivatives of g(t) independent of the

compact set D.

Lemma 2.4.3. Let g(t), t ∈ [0, S] be a C∞(D× [0, S]) solution to the h flow, for

some h which is 1+ε(n) fair to g(t), for all t ∈ [0, S] (ε as in Lemma 2.4.1).Then

sup
B(x0,r)

|∇g(x, t)|2 ≤ c(n, h, r)
1

t
, ∀t ∈ [0, S],

where B(x0, r) denotes a ball of radius r with centre x0 with respect to the met-

ric h. The norm is calculated with respect to metric h. The constant c(n, h, r)

decrease with the radius r.

Proof. By (2.9), we saw that the function ψ(x, t) = (φ(x, t) + a(n))|∇g(x, t)|2

satisfies

(
∂

∂t
− gαβ∇α∇β)ψ ≤ −1

2
ψ2 + c0(n, k0, k1) , ∀(x, t) ∈M × [0, S] (2.11)

Define f(x, t) = ψ(x, t)t, f satisfies

(
∂

∂t
− gαβ∇α∇β)f ≤ −1

2

f 2

t
+
f

t
+ c0t , ∀(x, t) ∈M × [0, S].
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For fixed x0 ∈ M , as in [32] we can use the background metric h to construct

time independent cut off function η satisfying

η(x) = 1, ∀x ∈ B(x0, r), (2.12)

η(x) = 0, ∀x ∈M\B(x0, 2r), (2.13)

0 ≤η(x) ≤ 1 ,∀x ∈M, (2.14)

h|∇η|2 ≤ c1

(
1

r

)
η, (2.15)

∇i∇jη ≥ −c2

(
k0,

1

r

)
hij. (2.16)

Note also that the function η is C∞ almost everywhere and Lipschitz everywhere.

We can mollify the function η and obtain a C∞ function satisfying the same

properties but for slightly different balls and slightly different constants. By

choosing a new constant and new balls, we assume η ∈ C∞(M).

Using the properties of η, we get

(
∂

∂t
− gαβ∇α∇β)(fη) ≤ −1

2

f 2η

t
+
fη

t
+ c0tη − fgαβ∇α∇βη − 2gαβ∇αf∇βη,

In this proof, we will use c = c(n, h, r) to denote any constant which depends

on n, h, r only. Assume (x0, t0) is an interior point of B(x0, 2r)× [0, S] where fη

attains its maximum. Because of it , we get

−2gαβ∇αf∇βη = −2

η
gαβ∇α(fη)∇βη +

2

η
gαβ∇αη∇βη

=
2

η
gαβ∇αη∇βη,

at the point (x0, t0). Together with (2.15) , (2.16) ,it implies

−fgαβ∇α∇βη − 2gαβ∇αf∇βη ≤ cf,

at (x0, t0). Consequently , we have

(
∂

∂t
− gαβ∇α∇β)fη ≤ −1

2

f 2η

t
+
fη

t
+ cf + c0S.
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Since fη attains maximum at (x0, t0) and η ∈ [0, 1], we can conclude that

0 ≤ − 1

2t0
f 2η(x0, t0) +

fη(x0, t0)

t0
+ cf(x0, t0) + c0S

0 ≤ −1

2
(fη(x0, t0))2 + (1 + cS)fη(x0, t0) + cS2

0 ≤ −1

4
(fη(x0, t0))2 +

[
cS2 + (1 + cS)2

]
That is fη(x, t) ≤ fη(x0, t0) ≤ C(n, h, S). Since η = 0 on ∂B(x0, 2r) and

f(x, 0) = 0. This implies that supB(x0,r) f(x, t) ≤ C(n, h, S). Using 1 + ε(n)

fairness and the definition of f , we obtain the result.

We now further obtain interior estimates of higher derivatives of g(t).

Lemma 2.4.4. Let g(t), t ∈ [0, S] be a C∞(D)× [0, S] solution to the h flow, for

some h which is 1 + ε(n) fair to g(t), for all t ∈ [0, S], ε(n) as in lemma 2.4.1.

Then

sup
B(x0,r)

|∇i
g|2 ≤ c(n, i, r, k0, k1, ...ki)

1

tp
,∀t ∈ (0, S], i ∈ N,

where p = p(i, n) is an integer and B(x0, r) denotes a ball of radius r with respect

to metric h contained in D. The norm is calculated using metric h. The constant

c(n, i, r, k0, k1, ...ki) decrease with the radius r.

Proof. Without loss of generality, we can assume S ≤ 1. We calculate similar to

[32]. By the result of Lemma (2.2.2), ∀(x, t) ∈M × [0, S]

∂

∂t
|∇m

g|2 ≤ gαβ∇α∇β|∇
m
g|2 − 2gαβ∇α(∇m

g)∇β(∇m
g)

+ c(m,n, h)
∑

i+j≤m,i,j≤m

|∇i
g||∇j

g||∇m
g|

+ c(m,n, h)
∑

i+j+k+l=m+2,i,j,k,l≤m+1

|∇i
g||∇j

g||∇k
g||∇l

g||∇m
g|.

We will prove the interior estimate by induction on m. Let Ω = B(x0, 2r).

Assume that we already have

|∇i
g|2 ≤ c(n,m, h)

tp(i,n)
,∀x ∈ Ω, t ∈ [0, S], i = 1, 2, ...m− 1
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For simplicity, we denote ∂
∂t
− gαβ∇α∇β by 2. By assumption, we have

2|∇m
g|2 ≤ −2gij∇i(∇

m
g)∇j(∇

m
g) +

c

tq
|∇m

g|+ c

tq
|∇m

g|2 +
c

t
|∇m

g||∇m+1
g|

Where q = q(n,m, h) ∈ N denotes some power of p. In what follows we shall

freely replace powers of q by q and powers of c by c. Using 1+ ε(n) fair condition,

we can have

gij∇i(∇
m
g)∇j(∇

m
g) ≥ 1

1 + ε
|∇m+1

g|2

It implies that

2|∇m
g|2 ≤ − 1

2(1 + ε)
|∇m+1

g|2 +
c

tq
|∇m

g|2 +
c

tq
, ∀(x, t) ∈ Ω× [0, S]

Similarly,

2|∇m−1
g|2 ≤ − 1

2(1 + ε)
|∇m

g|2 +
c

tq
, ∀(x, t) ∈ Ω× [0, S]

in view of induction hypothesis. Following Shi in [32], we define

ψ(x, t) = (a+ |∇m−1
g|2)|∇m

g|2,

where a is a constant to be chosen later. Combining two evolution equations , we

get

2ψ = (a+ |∇m−1
g|2)2|∇m

g|2 + |∇m
g|22|∇m−1

g|2 − 2gij∇i|∇
m−1

g|2∇j|∇
m

j g|2

≤ (a+ |∇m−1
g|2)

[
− 1

2(1 + ε)
|∇m+1

g|2 +
c

tq
|∇m

g|2 +
c

tq

]
+ |∇m

g|2
[
− 1

2(1 + ε)
|∇m

g|2 +
c

tq

]
+ 4(1 + ε)|∇m

g|2|∇m+1
g||∇m−1

g|.

By cauchy inequality, the last term satisfies

4(1 + ε)|∇m
g|2|∇m+1

g||∇m−1
g| ≤ 1

8(1 + ε)
|∇m

g|4 +
c

tq
|∇m+1

g|.

So,

2ψ ≤
[
c

tq
− a

2(1 + ε)

]
|∇m+1

g|2

− 3

8(1 + ε)
|∇m

g|4 +
c

tq
(a+

c

tq
)|∇m

g|2 + (a+
c

tq
)
c

tq
.
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Using Cauchy Schwartz inequality and Young’s inequality, we deduce that

2ψ ≤
[
c

tq
− a

2(1 + ε)

]
|∇m+1

g|2 − 1

4(1 + ε)
|∇m

g|4 +
c(1 + a4)

tq
, (2.17)

for some q = q(n,m, h) ∈ N.

Now we modify the function little bit which sets a to be a function of t.

Define w(x, t) = tq+1

[
2c(1 + ε)

tq
+ |∇m−1

g|2
]
|∇m

g|2, where c, q are constant given

in (2.17).

Noted that a(t) =
2c(1 + ε)

tq
≥ |∇i

g|2, for i = 1, 2, ...m− 1 .

The evolution equation of the function ψ(x, t) = [a(t)+ |∇m−1
g|2]|∇m

g|2 becomes

2ψ = [a(t) + |∇m−1
g|2]

∂

∂t
|∇m

g|2 + [
∂

∂t
(a+ |∇m−1

g|2)]|∇m
g|2 − gij∇i∇jψ

≤ |∇m
g|2 ∂

∂t
a(t) +

[
c

tq
− a

2(1 + ε)

]
|∇m+1

g|2 − 1

4(1 + ε)
|∇m

g|4 +
c(1 + a4)

tq

≤ − 1

4(1 + ε)
|∇m

g|4 +
c(1 + a4)

tq

≤ − 1

4(1 + ε)
|∇m

g|4 +
c

t5q

Then we can evaluate the evolution equation of w(x, t).

2w(x, t) ≤ (q + 1)tqψ +
c

t4q−1
− tq+1

4(1 + ε)
|∇m

g|4

= (q + 1)
w

t
+

c

t4q
− 1

4(1 + ε)

w2

tq+1[a(t) + |∇m−1
g|2]2

≤ (q + 1)
w

t
+

c

t4q
− w2

c2
tq−1 ,∀(x, t) ∈ Ω× [0, S].

Let f(x, t) = t5qw(x, t), and calculate its evolution equation.

2f ≤ q + 1

t
f + ctq − c f 2

t4q+1
+

5qf

t

Let η be the cut-off function in Lemma (2.4.3). Let Φ = fη, and calculate the
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evolution equation of Φ(x, t).

2Φ = 2f · η + f ·2η − 2gij∇iη∇jf

≤ −fgij∇i∇jη +
(q + 1)fη

t
+ ctqη − cf 2η

t4q+1
+

5qfη

t

+
2(1 + ε)

η
|∇η|2f − 2

η
gij∇iη∇jΦ

Let (x0, t0) be the interior point of B(x0, 2r)×[0, S] where Φ attains its maximum.

By the properties of η, we conclude that

0 ≤ Cf + C
Φ(x0, t0)

t0
+ C − c′Φ(x0, t0)2

η(x0)t4q+1
0

+ C
Φ(x0, t0)

t0

where C = C(n, h,m, r), c′ = c(n,m, h) > 0.

Using the fact that S ≤ 1 and η ∈ [0, 1] ,we get

Φ(x0, t0) ≤ C ′′ = C ′′(n, h,m, r).

It implies that

f(x, t) ≤ C ′′, ∀(x, t) ∈ B(x0, r)× [0, S]

The result follows from the definition of f(x, t).

Theorem 2.4.5. Let g(t), t ∈ [0, S], h be as in lemma 2.4.4. Then

sup
x∈M
|∇i

g(x, t)|2 ≤ c(n, i, k0, k1, ...ki)

ti
,∀t ∈ (0, S], i ∈ N.

Proof. Without loss of generality, we assume that S ≤ 1. For any given t0 ∈ [0, S],

let R = t0 ≤ 1. Let h̃ =
1

R
h, g̃(t) =

1

R
g(Rt). Then h̃ is (1 + ε)-fair to g̃(t) and

g̃(t) solves h̃ flow. Noted that

k̃i = sup
x∈M
|h̃∇iRiem(h̃)|2

h̃
≤ ki.

Hence by lemma 2.4.4, we get

|h̃∇ig̃|2
h̃
(x, 1) ≤ c(n, i, k̃0, ...k̃i) ≤ c(n, i, k0, k1, ...ki).
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But

|h̃∇ig̃|2
h̃
(x, 1) = Ri|∇i

g|2h(x,R) ≤ c(n, i, k0, ...ki)

So ,

|∇i
g(x, t)|2 ≤ c(n, i, k0, k1, ...ki)

ti
∀(x, t) ∈M × (0, S].

2.5 Solution to Dirichlet problem.

As soon as we established the priori estimates, we are able to prove the fol-

lowing existence theorem.

Theorem 2.5.1. Let g0 be a C∞(D) metric and h a metric which is 1 + ε(n) fair

to g0 on D, where D ⊂ M is a compact domain in M (ε(n) as in lemma 2.4.1

and smaller than δ̃(n) in Lemma 2.3.2). There exists an S = S(n, k0) > 0 and a

family of metrics g(t), t ∈ [0, S] which solves h flow, h is 1 + 3ε(n) fair to g(t) for

all t ∈ [0, S], and g|∂D(t) = g0, g(0) = g0.

Proof. Let S = S(n, k0, ε) be the positive real number obtained in Theorem 2.3.3.

US ={u : D × [0, S]→ ⊗2T ∗(D)| 1

2
hij ≤ uij ≤ 2hij, u(x, 0) = g0, x ∈ D,

u(x, t) = g0, x ∈ ∂D, ||u|| < +∞}

B = {u : D×[0, S]→ ⊗2T ∗(D)| u(x, 0) = g0, x ∈ D, u(x, t) = g0, x ∈ ∂D, ||u|| < +∞}

where ||u|| = supD×[0,S] |u|h + supD×[0,S] |∇u|h + supD×[0,S] |∇
2
u|h.

Let Φ : US × [0, 1]→ B be a solution operator such that v = Φ(u, s) satisfies
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the following parabolic system.

∂

∂t
vkl = ûij∇i∇jvkl − sûcdûkphpqRlcqd − sûcdûlphpqRkcqd

+ s
2
ûcdûpq(∇kupc · ∇luqd + 2∇cukp · ∇quld

−2∇cukp · ∇dulq − 4∇kupc · ∇dulq)

v(x, 0) = sg0 + (1− s)h(x), x ∈ D

v(x, t) = sg0 + (1− s)h(x), x ∈ ∂D

(2.18)

where û(x, t) = (1 − s)h(x) + su(x, t), s ∈ [0, 1]. v = Φ(u, s) is well defined

for all u ∈ US, s ∈ [0, 1] (see Theorem 7.1 in [18]) and Φ(u, 0) = h, ∀u ∈ US.

To apply Leray-Schauder fixed point Theorem, we need to check that Φ is a

compact mapping. We first verify the continuity in u of Φ(u, s) on US × [0, T ].

Let v1 = Φ(u1, s), v2 = Φ(u2, s), for v = v1 − v2, u = u1 − u2, using the fact that

uij − vij = uiαvjβ(uαβ − vαβ), we have

∂

∂t
vkl − û1

ij∇i∇jvkl = su ∗ û1 ∗ û−1
1 ∗ û−1

2 ∗Rm+ su ∗ û−1
1 ∗ û−1

2 ∗ û2 ∗Rm

+ su ∗ û−1
1 ∗ û−1

2 ∗ ∇
2
v2 + su ∗ û−1

1 ∗ û−1
1 ∗ û−1

2 ∗ ∇u1 ∗ ∇u1

+ su ∗ û−1
1 ∗ û−1

2 ∗ û−1
2 ∗ ∇u1 ∗ ∇u1 + û−1

2 ∗ û−1
2 ∗ ∇u ∗ ∇u1

+ û−1
2 ∗ û−1

2 ∗ ∇u ∗ ∇u2 .

Also,

v(x, 0) = 0, x ∈ D and v(x, t) = 0, x ∈ ∂D.

By the Schauder estimate in [17], we see that when u is small enough, v will

be small. The uniform continuity in s of Φ(u, s) is proved analogously. The

compactness follows from the apriori estimate for supD×[0,S] ||v||C2+α (see [17])

and the Arzelà-Ascolii Theorem. It remains to establish the apriori estimate for

the fixed point us = Φ(us, s). If us = Φ(us, s), one may verify that g(x, t) =
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sus(x, t) + (1− s)h solves

∂

∂t
gkl = gij∇i∇jgkl − s2gcdgkph

pqRlcqd − s2gcdglph
pqRkcqd

+1
2
gcdgpq(∇kgpc · ∇lgqd + 2∇cgkp · ∇qgld

−2∇cgkp · ∇dglq − 4∇kgpc · ∇dglq)

g(x, 0) = s2g0 + (1− s2)h(x), x ∈ D

g(x, t) = s2g0 + (1− s2)h(x), x ∈ ∂D

(2.19)

Using the same technique we used in Theorem 2.3.3, we can conclude that h is

a priori 1 + 3s2ε fair to g(x, t) for all t ∈ [0, S]. Thus sup
D×[0,S]

|us|h ≤ 1 + 3ε for

all s ∈ [0, 1]. Also, argue as in Lemma 2.4.1 and Lemma 2.4.2, we can obtain

sup
D×[0,S]

|∇us|h ≤ C(n, h, ε, g0) and sup
D×[0,S]

|∇2
us|h ≤ C ′(n, h, ε, g0) for all s ∈ [0, 1].

Thus by using Leray Schauder fixed point theorem, there exists a fixed point

g = Φ(g, 1) which solves the h-flow with boundary data g0.

2.6 Existence of entire solutions.

In this section, our final goal is to find a sensible solution to the h-flow with

initial metric g0 which is non-smooth. Before doing this, we first establish the

existence of h-flow on M with smooth initial metric g0.

Theorem 2.6.1. Let g0 be a C∞(M) metric and h a metric on M which is

1 + ε(n) fair to g0, ε(n) as in lemma 2.4.1. There exists T = T (n, k0) > 0 and

a family of metrics g(t), t ∈ [0, T ] in C∞(M × [0, T ]) which solves h flow with

initial metric g(0) = g0, h is (1 + 3ε) fair to g(t) for t ∈ [0, T ], and

|∇i
g|2 ≤ c(n, i, k0, ...ki)

ti
, ∀t ∈ (0, T ], i ∈ N.

Proof. If M is compact manifold, we obtain the result using Theorem 2.5.1 and

Theorem 2.4.5. If not , let {Di}, i ∈ N be a family of compact sets which exhaust
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M , Di = B(h)(x0, i) where B(h)(x0, i) is the ball of radius i for some fixed point

x0 with respect to the metric given by h.

Let gi(t), t ∈ [0, T ] be the Dirichlet solutions on Di with boundary data g0. By

theorem 2.5.1, T depends on n, k0 only. Let Dj be a fixed compact set. For each

i >> j, gi(t), t ∈ [0, T ] solves h flow on Dj. On the other hand, since Dj is

compact, we have

sup
Dj

|∇m
g0|2 = Cj,m < +∞

We now claim that |∇m
gi(x, t)|2 ≤ C ′(m,n, h, j, Cj,m) for all (x, t) ∈ Dj × [0, T ],

i > 2j. If we are able to show this, we may apply Arzelà-Ascolii Theorem to

obtain a subsequence convergent to a smooth limit g(t), t ∈ [0, T ] on Dj. Apply

this argument on each Dj, we can take a diagonal subsequence which converges

to a limit solution g(t), t ∈ [0, T ] on M. So, it suffices to prove the claim.

We prove it by induction on m. Let ψ(x, t) = [φ(gi) + a(n)]|∇gi(x, t)|2 as in

Lemma 2.4.1 .

By equation (2.9), we have

(
∂

∂t
− gαβ∇α∇β)ψ ≤ −1

2
ψ2 + c0(n, k0, k1) ,∀(x, t) ∈ D2j × [0, T ]

Let η be the cut-off function in Lemma 2.4.3 with r = j now. Define F (x, t) =

ψ(x, t)η(x),

2F ≤ −1

2
ψ2η + c0η − 2gij∇iη∇jψ − ψgij∇i∇jη

≤ − 1

2η
F 2 + c0η + Cψ − 2gij

∇iη

η
∇jF, ∀(x, t) ∈ D2j × [0, T ].

where C = C(n, k0, j) > 0 .

Assume (x0, t0) is an interior point of B(h)(x0, 2j)× [0, T ] where F (x, t) attains

its maximum. We get

F (x0, t0) ≤ C ′ = C ′(n, k0, k1, j)

So, ∀(x, t) ∈ Dj × [0, T ]

ψ(x, t) ≤ max(C ′, sup
Dj

ψ(x, 0)) = C̃(n, k0, k1, j, Cj,1).
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This implies

|∇gi(x, t)|2 ≤ C ′(n, h, j, Cj,1) , ∀(x, t) ∈ Dj × [0, T ]

Assume we already have

sup
D2j

|∇k
gi(x, t)|2 ≤ Ĉ(m,n, h, j, g0) ∀(x, t) ∈ D2j × [0, T ], ∀k ∈ {1, 2, ...m− 1}.

As in the proof of lemma 2.4.4, we define φ(x, t) = (a + |∇m−1
g|2)|∇m

g|2 where

a is a constant to be chosen. By (2.17), we have

2φ ≤
[
c

tq
− a

2(1 + ε)

]
|∇m+1

g|2 − 1

4(1 + ε)
|∇m

g|4 +
c(1 + a4)

tq
,

Since we have upper bound independent of time, the constant q in the above

equation is indeed 0, and c is in fact some power of Ĉ. We may assume that

c > Ĉ.

2φ ≤
[
c− a

2(1 + ε)

]
|∇m+1

g|2 − 1

4(1 + ε)
|∇m

g|4 + c(1 + a4),

Choose a = 2c(1 + ε). Noted that a > Ĉ .

2φ ≤ − 1

4(1 + ε)
|∇m

g|4 + c′(m, j, n, h, g0)

≤ − φ2

16(1 + ε)a2
+ c′

= −C(m, j, n, h, g0)φ2 + c′, ∀(x, t) ∈ D2j × [0, T ]

Similarly we define g = φη . And follow exactly the same step, we may conclude

that

φ(x, t) ≤ C̃(m,n, h, j, Cj,m), ∀(x, t) ∈ Dj × [0, T ].

The claim follows immediately.

Theorem 2.6.2. Let g0 be a complete continuous metric and h a complete metric

on M which is 1 + ε(n) fair to g0 , ε(n) as in lemma 2.1.4. There exists T =
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T (n, k0) > 0 and a family of metrics g(t), t ∈ (0, T ] in C∞(M × (0, T ]) which

solves h flow for t ∈ (0, T ] ,h is (1 + 4ε) fair to g(t) for t ∈ (0, T ], and

lim
t→0

sup
x∈Ω′
|g(t)− g0| = 0,

sup
x∈M
|∇i

g|2 ≤ c(n, i, k0, ...ki)

ti
,∀t ∈ (0, T ], i ∈ N,

where Ω′ is any open set satisfying Ω′ ⊂ Ω , where Ω is any open set in which g0

is continuous.

Proof. Let p be a fixed point on M , {Da = Bh(p, a)} be a family of compact sets

which exhaust M . Let ϕa : M → R be a smooth cut-off function on M , such that

ϕa = 0 outside Bh(p, a) and ϕa = 1 on each Bh(p, a/2). Since Da is compact,

there exists δa > 0 such that inj(p) ≥ δa > 0 for all p ∈ Da. Thus, we can define

a sequence of smooth metrics which approximating g0 by

ag0(p) =
ϕa(p)

εna

∫
q∈M

g0(q)φ

( |exp−1
p (q)|
εa

)
dq + (1− ϕa)h , ∀p ∈M

where expp : TpM → M is the exponential map of M at p, εa is chosen small

enough such that εa < δa and converges to 0 as a goes to infinity. φ is a nonnega-

tive smooth function on Rn with support on unit ball Bh(0) satisfying
∫
Rn φ = 1.

{ag0}a∈N is a sequence of smooth metrics which satisfy lima→∞
ag0 = g0, where

the limit is uniform in the C0 norm on any compact set. It follows that h is

(1 + 4ε
3

) fair to ag0 for all a ≥ N for some N ∈ N. We flow each ag0 by h-flow to

obtain a family of metrics ag(t), t ∈ [0, T ], T = T (n, k0) independent of a which

satisfy

|∇j
(ag(t))|2 ≤ cj

tj
, ∀t ∈ (0, T ],

independent of a, for all a ≥ N and h is 1 + 4ε fair to each ag(t). We then obtain

a limiting solution g(x, t), t ∈ (0, T ] via g(x, t) = lima→∞
ag(t), which is defined

for all t ∈ (0, T ]. This limit is obtained by using Arzelà-Ascolii Theorem and it

maybe necessary to pass to sub-sequence to obtain the limit.
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It remains to show that the metrics g(t)|Ω′ uniformly approaches g0|Ω′ as t→ 0.

We first obtain estimates on the rate at which it approaches to the limit if g0 is

smooth.

Let ε > 0 be given as in previous lemmas. Using the evolution equation of h-flow

and 1 + ε fairness, gij satisfies

∂

∂t
gij ≤ gαβ∇α∇βg

ij + c(n, h)gij − Sij, (2.20)

where Sij is a positive tensor. Fix x0 in Ω′, and fix a coordinate chart around x0,

ψ : U →M,x0 ∈ U ⊂⊂ Ω′. Define a (0, 2) tensor l by

l(V,W )(x) = vj(x)Wj(x)hqp(x0)gqi0 (x0)hpj(x),

Noted that the tensor l depends on the coordinate chart and lij(x0) = gij0 (x0).

By definition of l, we get

h|gij0 (x)− lij(x)| ≤ h|gij0 (x)− gij0 (x0)|+h |gij0 (x0)− hqp(x0)gqi0 (x0)hpj(x)| ≤ ε

2
.

(2.21)

for all x ∈ B(h)(x0, r) ⊂ U for some small r = r(g0, h, ε) > 0, where the last

inequality follows from the continuity of gij0 and continuity of hij. This implies

(1− 2ε)h ≤ l ≤ (1 + 2ε)h , ∀x ∈ B(h)(x0, r)

And as a consequence of definition of l and U being compact, we also have

h
sup

B(h)(x0,r)

|∇ ∇l| ≤ c(h, n, U).

By (2.20), we get

∂

∂t
(gij − lij) ≤ gαβ∇α∇β(gij − lij) + c(h, n, U)(gij − lij) + c(h, n, U)hij,

and hence

∂

∂t
(e−ct(gij − lij)− cthij) ≤ gα∇α∇β(e−ct(gij − lij)− cthij),



Ricci Flow on Complete Noncompact Manifolds 40

for all x ∈ B(h)(x0, r). Define (0,2) tensor f by f ij = e−ct(gij − lij) − cthij ,we

have ( ∂
∂t
− gαβ∇α∇β)f ij ≤ 0.

Let η be the cut-off function as previous lemma for the ballB(h)(x0, r), with η ≡ 1

on B(h)(x0, r/2) and η ≡ 0 on ∂B(h)(x0, r). Using the properties of η, we see

that

(
∂

∂t
− gαβ∇α∇β)(ηf ij) ≤ −f ijgαβ∇α∇βη − 2gαβ∇αη∇βf

ij

≤ cf ij − 2

η
gαβ∇αη∇β(ηf ij), where c = c(n, h,

1

r
, U).

It implies that

(
∂

∂t
− gαβ∇α∇β)η(f ij − c1th

ij) ≤ 0, for some c1 = c1(
1

r
, n, h, U).

Hence, by maximum principle, we get

ηf ij(x, t)− c1th
ij(x) ≤ ηf ij(x, 0) ≤ ε

2
hij(x), ∀x ∈ B(h)(x0, r).

So,

f ij(x, t) ≤ (c1t+
ε

2
)hij, ∀x ∈ B(h)(x0,

r

2
), t ∈ [0, T ]

f ij(x, t) ≤ εhij , ∀x ∈ B(h)(x0,
r

2
), t ≤ ε

2c1

,

gij − lij ≤ ect(ε+ ct)hij ≤ 2εhij, ∀x ∈ B(h)(x0,
r

2
), t ≤ T (c1, c, ε).

Substitute (2.21) into the above inequality, we get that

gij − gij0 = gij − lij + lij − gij0 ≤ 3εhij ,∀x ∈ B(h)(x0,
r

2
), t ≤ T (c1, c, ε).

(2.22)

Apply the above argument to each ag(t). We have

agij ≤a gij0 + 3εhij ,∀x ∈ B(h)(x0,
ra
2

), t ≤ T (n, U, h, ε,
1

ra
).

where ra is chosen such that

h|agij0 −a lij| ≤
ε

2
,∀x ∈ B(h)(x0, ra)



Ricci Flow on Complete Noncompact Manifolds 41

We wish to choose r so that it is independent of a. ∀x ∈ B(h)(x0, ra) ,b > a

h|bgij0 (x)−b lij| ≤h |bgij0 −a g
ij
0 |+h |agij0 −a lij|+h |blij −a lij|

≤ 3ε (provided that a, b are large enough).

So we can choose r > 0 such that it is independent of a.

Hence, g(t) = lima→∞
ag(t) satisfies

gij − gij0 ≤ 3εhij ,∀x ∈ B(h)
(
x0,

r

2

)
, t ≤ T (c1, c, ε). (2.23)

Let φ be the function defined in lemma 2.4.1. By calculation in the lemma , we

see that φ satisfies

∂

∂t
φ ≤ gαβ∇α∇βφ+ c0(h, n)− m2

8
|∇g|2,

Arguing as above, but for φ instead of gij, we get

φ(x, t) ≤ φ(x, 0) + 3ε, for some S = S(n, h, g0, ε,Ω
′) > 0. (2.24)

Combining (2.24) and (2.23), we see that

sup
Ω′

h|g0(x)− g(x, t)| ≤ c(n)ε
1

m(n) , ∀t ∈ [0, S],∀x ∈ Ω′



Chapter 3

Existence of Ricci Flow in the

case of KC
g > 0

In this chapter, we will study the short time existence problem of Ricci flow

on open manifolds of positive complex sectional curvature without requiring the

upper curvature bound. The idea of proof is to consider the graph of a convex

function β on Ci where its doubling is a smooth closed manifold (Mi, gi) with

KC
gi
> 0 converging to (M, g). And then estimate the lower bound for the lifespan

of Ricci flow on each (Mi, gi) to ensure the maximal time will not degenerate to

0 when we let i→∞. After that, we obtain curvature bound independent of i of

arbitrarily large ball around the soul point p0 which allows us to obtain a limit

solution on M .

For the case of KC ≥ 0, several additional difficulties arise. For instance, the

soul is not necessarily a point. But it can be overcame via splitting theorem (see

Theorem 5.1 in [10]). Another difficulty is that the sublevels set of Busemann

function Cl = b−1((−∞, l]) have non-smooth boundary. By reparameterizing

the distance function d( · , Cl), an sequence of C∞ closed manifolds Dl,k can be

constructed which converges to the double D(Cl). But Dl,k are no longer convex.

Fortunately, its complex sectional curvature can be controlled by estimating the

42
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hessian of d2( · , Cl). And, a curvature control can be obtained for some time for

the Ricci flows on (Dl,k, gl,k). As a consequence, we can obtain a limit Ricci flow

(Dl,∞, gl,∞) with KC(gl,∞(t)) > 0 for t > 0. It reduces the case of KC ≥ 0 to the

positively curved case.

3.1 Basic Background material

We first need to introduce the definition of complex sectional curvature on a

manifold.

Definition 3.1.1. Let (Mn, g) be a Riemannian manifold and consider its com-

plexified tangent bundle TCM = TM ⊗ C. We extend the curvature tensor R

and the metric g at p to C-multilinear maps R : (TC
p M)4 → C, g : (TC

p M)2 → C.

The complex sectional curvature of a 2-dimensional complex subspace σ of TC
p M

is defined by

KC(σ) = R(u, v, ū, v̄),

where u and v form any unitary basis for σ. We say M has non-negative complex

sectional curvature if KC ≥ 0.

Definition 3.1.2. Let (Mn, g) be a Riemannian manifold with n ≥ 4. We say

M has nonnegative isotropic curvature if

R(e1, e3, e1, e3) +R(e1, e4, e1, e4) +R(e2, e3, e2, e3)

+R(e2, e4, e2, e4)− 2R(e1, e2, e1, e4) ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} on M .

For manifold Mn with n ≥ 4, the curvature on M × R2 is given by

R̃(ṽ1, ṽ2, ṽ3, ṽ4) = R(v1, v2, v3, v4) (3.1)

where ṽi = (vi, ei) ∈ T(p,q)(M × R2) = TpM × TqR2.
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The following proposition gives equivalence of nonnegative isotropic curvature

and nonnegative complex sectional curvature.

Proposition 3.1.3. (see Proposition 7.18 in [29]) Let Mn be a Riemannian

manifold with n ≥ 4, R̃ be the curvature tensor on M × R2 defined by (3.1).

Then the followings are equivalent.

1. R̃ has nonnegative isotropic curvature.

2. We have

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4) + µ2R(e2, e3, e2, e3)

+λ2µ2R(e2, e4, e2, e4)− 2µλR(e1, e2, e3, e4) ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} on M , for all µ, λ ∈ [−1, 1].

3. We have R(η, ζ, η̄, ζ̄) ≥ 0 for all η, ζ ∈ TC
p M ,p ∈M .

Proof. (1)⇒ (2): Let {e1, e2, e3, e4} be an orthonormal four-frames on M , µ, λ ∈

[−1, 1]. We define

ẽ1 =
(
e1, (0, 0)

)
, ẽ2 =

(
µe2, (0,

√
1− µ2)

)
,

ẽ3 =
(
e3, (0, 0)

)
, ẽ4 =

(
λe4, (0,

√
1− λ2)

)
.

The vectors {ẽ1, ẽ2, ẽ3, ẽ4} form an orthonormal four-frame in M × R2. By (1),

we have

R̃(ẽ1, ẽ3, ẽ1, ẽ3) + R̃(ẽ1, ẽ4, ẽ1, ẽ4) + R̃(ẽ2, ẽ3, ẽ2, ẽ3)

+R̃(ẽ2, ẽ4, ẽ2, ẽ4)− 2R̃(ẽ1, ẽ2, ẽ1, ẽ4) ≥ 0

which implies

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4) + µ2R(e2, e3, e2, e3)

+λ2µ2R(e2, e4, e2, e4)− 2µλR(e1, e2, e3, e4) ≥ 0.
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(2) ⇒ (3): Let η, ζ ∈ TC
p M be 2 linearly independent vectors. Let σ ⊂ TC

p M be

the plane spanned by η, ζ. By proposition B.3 in [29], there exists an orthonormal

four-frames {e1, e2, e3, e4} and real numbers λ, µ ∈ [0, 1] such that e1 + iµe2 and

e3 + iλe4 are in σ. Let z = e1 + iµe2 and w = e3 + iλe4, we can find a, b, c, d ∈ C

such that ζ = az + bw and η = cz + dw. This implies

R(η, ζ, η̄, ζ̄) = |ad− bc|2R(z, w, z̄, w̄).

Using Bianchi identity, we can obtain

R(z, w, z̄, w̄) = R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+ µ2R(e2, e3, e2, e3) + µ2λ2R(e2, e4, e2, e4)

− 2µλR(e1, e2, e3, e4) ≥ 0

which implies (3).

(3) ⇒ (1): Let {ẽ1, ẽ2, ẽ3, ẽ4} be an orthonormal four-frames on M × R2. We

write ẽi = (xi, yi) ∈ T(p,q)M ×R2 where xi ∈ TpM , yi ∈ TqR2. Define ζ = x1 + ix2

and η = x3 + ix4. It follows from the first Bianchi identity that

0 ≤ R(η, ζ, η̄, ζ̄) =R(x1, x3, x1, x3) +R(x1, x4, x1, x4)

+R(x2, x3, x2, x3) +R(x2, x4, x2, x4)

− 2R(x1, x2, x3, x4).

It implies

R̃(ẽ1, ẽ3, ẽ1, ẽ3) + R̃(ẽ1, ẽ4, ẽ1, ẽ4) + R̃(ẽ2, ẽ3, ẽ2, ẽ3)

+R̃(ẽ2, ẽ4, ẽ2, ẽ4)− 2R̃(ẽ1, ẽ2, ẽ1, ẽ4) ≥ 0

Therefore, (3) holds.

Now we present a classification result about homeomorphic sphere.
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Proposition 3.1.4. Let (Mn, g) be closed with KC
g ≥ 0. If M is homeomorphic

to a sphere, then the Ricci flow g(t) with g(0) = g has KC
g(t) > 0 for all t > 0.

Proof. Since M is a sphere, the metric is irreducible and neither Kähler nor

quaternion-Kähler.

If (M, g) is a locally symmetric space, it is symmetric as it is connected

and hence homogeneous. Homogeneous simply-connected rational cohomology

spheres are all classified (see [4]). These results give a list of pairs (G,H) such

that G/H is homeomorphic to a sphere. One can compare the list of classification

of symmetric space to see that SO(n+ 1)/SO(n) is the only possiblity which is a

round sphere. So, KC
g > 0. Since the positivity of complex sectional curvature is

preserved under Ricci flow (see Proposition 7.28 in [29]). In this case, it is done.

If it is not locally symmetric, we deduce that g as well as g(t) has SO(n)

holonomy by using the classification result of Berger [15]. We now prove that

KC
g(t) > 0 for all t > 0. We follow the steps in Proposition 7 of [27]. Let t′ > 0

and g′ = g(t′). Noticed that since KC ≥ 0 is preserved under Ricci flow (see

Proposition 7.28 in [29]), by Proposition (3.1.3), we have

Rg′(e1, e3, e1, e3) + λ2Rg′(e1, e4, e1, e4) + µ2Rg′(e2, e3, e2, e3)

+λ2µ2Rg′(e2, e4, e2, e4)− 2µλRg′(e1, e2, e3, e4) ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all µ, λ ∈ [−1, 1].

Now, it suffices to show that

Rg′(e1, e3, e1, e3) + λ2Rg′(e1, e4, e1, e4) + µ2Rg′(e2, e3, e2, e3)

+λ2µ2Rg′(e2, e4, e2, e4)− 2µλRg′(e1, e2, e3, e4) > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all µ, λ ∈ [−1, 1]. Suppose it

is not true, there exists a orthonormal frame {e1, e2, e3, e4} in TpM with respect
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to g′ and satisfies

Rg′(e1, e3, e1, e3) + λ2Rg′(e1, e4, e1, e4) + µ2Rg′(e2, e3, e2, e3)

+λ2µ2Rg′(e2, e4, e2, e4)− 2µλRg′(e1, e2, e3, e4) = 0.

Since the holonomy group is SO(n), the manifold is not flat. Hence we can find

a point q ∈M and an orthonormal frame {v1, v2} ⊂ TqM such that

Rg′(v1, v2, v1, v2) > 0.

Let γ : [0, 1]→ M be a piecewise smooth path from p to q. Since Hol0(M, g′) =

SO(n), we can find a loop σ : [0, 1] → M at p such that v1 = Pγ ◦ Pσ e1 and

v2 = Pγ ◦ Pσ e2 (Here, Pγ denotes the parallel transport along γ with respect to

the metric g′). By using the Proposition 9 in [27], we know that the equality is

invariant under parallel transport. So

Rg′(v1, v3, v1, v3) + λ2Rg′(v1, v4, v1, v4) + µ2Rg′(v2, v3, v2, v3)

+λ2µ2Rg′(v2, v4, v2, v4)− 2µλRg′(v1, v2, v3, v4) = 0 (3.2)

where v3, v4 ∈ TqM defined by vi = Pγ◦σei, i = 3, 4. Similarly, we can show that

Rg′(v1, v2, v1, v2) + λ2Rg′(v2, v4, v2, v4) + µ2Rg′(v1, v3, v1, v3)

+λ2µ2Rg′(v3, v4, v3, v4)− 2µλRg′(v2, v3, v1, v4) = 0 (3.3)

and

Rg′(v2, v3, v2, v3) + λ2Rg′(v3, v4, v3, v4) + µ2Rg′(v2, v1, v2, v1)

+λ2µ2Rg′(v1, v4, v1, v4)− 2µλRg′(v3, v1, v2, v4) = 0. (3.4)

Sum up (3.2), (3.3) and (3.4). This yields

[Rg′(v1, v2, v1, v2) +Rg′(v1, v3, v1, v3) +Rg′(v2, v3, v2, v3)]

+ λ2[Rg′(v1, v4, v1, v4) +Rg′(v2, v4, v2, v4) +Rg′(v4, v3, v4, v3)]

= 0.
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Since (M, g′) has nonnegative sectional curvature, it follows that

Rg′(v1, v2, v1, v2) = 0

which contradicts with our assumption.

3.2 Cheeger-Gromoll convex exhaustion.

Let (M, g) be a nonnegatively curved open manifold. A ray is a unit speed

geodesic γ : [0,+∞) → M such that γ|[0,s] is minimizing geodesic for any s > 0.

Fix o ∈M , let

Q = {γ : [0,+∞)→M : γ is a ray with γ(0) = o}.

Consider the busemann function b of M .

b(p) = sup
γ∈Q
{ lim
s→∞

(s− dg(γ(s), p))}.

In case of non-negatively curved open manifold, Cheeger and Gromoll (see

[13]) show that b is a convex function, that is for any geodesic c(s) ∈ M the

function b ◦ c(s) is convex function on R.

Throughout the chapter, we will make use of the family of sublevel set

Cl
.
= b−1((−∞, l])

to construct a sequence of Ricci flow and sub-converge to a solution on M . The

following properties of Cl will be used in this paper.

Proposition 3.2.1. If (M, g) has nonnegative curvature with Cl constructed

above, then Cl has the following properties. (see section 1 in [13])

(1): Each Cl is a totaly convex compact set,
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(2): dim Cl = n for all l > 0, ∪l>0Cl = M ,

(3): s < l implies Cs ⊂ Cl and Cs = {x ∈ Cl : dg(x, ∂Cl) ≥ l − s},

(4): each Cl, l > 0, has the structure of an embedded submanifold of M with

smooth totally geodesic interior and possibly non-smooth boundary.

Furthermore, if (M, g) has positive sectional curvature, by local smoothing

procedure, one can modify the Busemann function to obtain a smooth function

β.

Theorem 3.2.2. (see [31]) If (M, g) is an open manifold with Kg > 0, then there

exists a smooth proper strictly convex function β : M → [0,∞[.

3.3 Approximating sequence for the initial con-

dition.

Let (M, g) be an open manifold with Kg > 0. On M , we consider the function

β. Since β is proper and bounded below, global minimum is attained. Without

loss of generality, we assume the global minimum is 0. Furthermore, since β is

strictly convex, we have β−1(0) = {p0}. Since β is a smooth convex function,

hence the sublevel set Ci = {x ∈ M : β(x) ≤ i} is a convex set with smooth

boundary for all i > 0.

Our goal here is to construct a pointed sequence of closed manifolds converging

to (M, g, p0) in the following sense.

Definition 3.3.1. (Cheeger-Gromov convergence). Let (Mn
i , gi, pi) be a sequence

of complete manifolds. We say (Mi, gi, pi) converges to the pointed Riemannian

manifold (M∞, g∞, p∞) if there exists

(1): a collection of {Ui}i≥1 of compact sets with Ui ⊂ Ui+1, ∪i≥1Ui = M∞ and

p∞ ∈ int(Ui) for all i
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(2): φi : Ui →Mi diffeomorphisms onto their image, with φi(p∞) = pi

such that φ∗i gi → g∞ smoothly on compact set of M∞, that is

|∇m(φ∗i gi − g∞)| → 0, as i→∞ on K, ∀m ∈ N

for every compact set K ⊂M∞. Here the norm and ∇ are computed with respect

to any fixed background metric.

A sequence of complete evolving manifolds (Mi, gi(t), pi)t∈I converges to a

pointed evolving manifold (M∞, g∞(t), p∞)t∈I if we have (1),(2) as before such

that φ∗i (t)→ g∞(t) smoothly on compact subsets of M∞ × I.

The first attempt would be to consider the double D(Ci) of Ci. However,

D(Ci) may not be a smooth manifold. So we try to modify the metric near the

boundary ∂Ci to form cylindrical end so that the gluing is well defined.

Proposition 3.3.2. Let (M, g) be an open manifold with KC
g > 0 and soul point

p0. Then there exists a collection (Mi, gi, p0)i≥1 of smooth closed n-dimensional

pointed manifolds with KC
gi
> 0 satisfying

(Mi, gi, p0)→ (M, g, p0) as i→∞

in the sense of the smooth Cheeger-Gromov convergence .

Proof. Let s > 0 be fixed and small. For each fixed Ci, choose ϕi such that

(a) ϕi is smooth on (−∞, i) and continuous at i,

(b) ϕi ≡ 0 on(−∞, i− s] and ϕi(i) = 1,

(c) ϕ′i, ϕ
′′
i are positive on (i− s, i),

(d) and the inverse of ϕi, ϕ
−1
i , has all left derivatives vanishing at i.

Take ui = ϕi ◦ β, and put

Gi = {(x, ui(x)) : x ∈ Ci}

G̃i = {(x, 2− ui(x)) : x ∈ Ci}
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(d) ensures that they paste smoothly together to a C∞ closed hypersurface

D(Gi) = Gi∪ G̃i ⊂M×R , where M×R has nonnegative complex sectional cur-

vature. We now claim that D(Gi) = (Mi, gi) has nonnegative complex sectional

curvature. First we observe that ui is convex function on Ci. Since for any vector

field X on M ,

∇2ui(X,X) = 〈∇X∇ui, X〉 = ϕ′′i · (∇Xβ)2 + ϕ′i · ∇2β(X,X) ≥ 0.

Noted that the submanifolds Gi and G̃i are isometric. So it suffices to prove that

Gi has nonnegative complex sectional curvature.

For simplicity we denote ui by f . Let q = (p, f(p)) ∈ int(Gi), consider TqGi.

Let {xj} be local chart at p. Then (x1, ..., xn, t) gives a chart at q ∈ M × R.

{ej}nj=1 =

{
∂

∂xj
+
∂f

∂xj
∂

∂t

}n
j=1

forms a basis for TqGi. Let ∇̄ be the connection

on M × R induced by the product metric. By Gauss Codazzi equations,

R(X, Y, X̄, Ȳ ) = R̄(X, Y, X̄, Ȳ ) + 〈B(X, X̄), B(Y, Ȳ )〉 − |B(X, Ȳ )|2.

Here R̄m is the curvature tensor on M ×R and B(·, ·) is the second fundamental

form which are extended complex linearly. So it suffices to show that for each i, j

〈∇̄eiei
⊥, ∇̄ejej

⊥〉 − 〈∇̄eiej
⊥, ∇̄eiej

⊥〉 ≥ 0

Assume

{
∂

∂xj

}n
j=1

is an orthonormal basis at p, then we obtain

∇̄eiej =
∂2f

∂xi∂xj
∂

∂t
at q = (p, f(p)).

Let N be the normal vector field on Gi , and N ′ = 〈N, ∂
∂t
〉. It implies

∇̄iej
⊥ = N ′

∂2f

∂xi∂xj
∂

∂t
,∀i, j = 1, 2...n,

Since f is convex function, we get

〈∇̄eiei
⊥, ∇̄ejej

⊥〉 − 〈∇̄eiej
⊥, ∇̄eiej

⊥〉 = (fiifjj − f 2
ij)(N

′)2 ≥ 0
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If q ∈ ∂Gi ⊂ D(Gi), let qj be a sequence of point in int(Gi) such that qj → q

as j → ∞. From above, we have KC(qj) ≥ 0. By taking limit, we deduce that

KC(q) ≥ 0. Noticed that Ci−ε can be seen as subset of Mi for all i > 0, which

implies that (Mi, gi, p0) converges to (M, g, p0) in the Cheeger-Gromov sense.

Since (Mi, gi, p0) are closed manifolds, we can use the short time existence of the

Ricci flow on Mi (see [26]), and choose ti > 0 small enough that (Mi, gi(ti), p0) still

converges to (M, g, p0). By Thm 2.5 in [13], we know that Ci−ε is homeomorphic

to a disc. Hence, Mi is a topological sphere. We can employ Proposition (3.1.4)

to conclude that KC
gi(ti)

> 0. Thus gi(ti) is a solution of our problem.

3.4 Ricci flow on the approximating sequence.

Consider (Mi, gi, p0) the sequence of closed, positively curved manifolds ob-

tained from above. For each i, we construct a Ricci flow (Mi, gi(t)) defined on a

maximal time interval [0, Ti) with gi(0) = gi.

The first difficulty to address is that the curvature of gi may tend to infinity

as i → ∞. It maybe happen that Ti → 0 as i → ∞. So our next concern is

to prove that Ti admit a uniform lower bound independent of i. We estimate it

by considering the volume growth of unit balls around p0. For such estimate, we

make a strong use of the following theorem.

Theorem 3.4.1. (Petrunin,[1]) Let (Mn, g) be a complete manifold with Kg ≥

−1. Then for any p in M ∫
Bg(p,1)

scalg dVg ≤ Cn,

for some constant Cn depending on the dimension only.

Proposition 3.4.2. Let (M, g) and (Mi, gi, p0) be as in Proposition 3.3.2. Then

there exists a constant τ > 0, depending on n, and V0 = volg(Bg(p0, 1)), such

that the Ricci flows (M, gi(t)) with gi(0) = gi are defined on [0, τ ], and satisfy

KC
gi(t)

> 0 for all t ∈ [0, τ ].
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Proof. For each i, (Mi, gi) is a closed n-manifold. So there exists some Ti > 0

and a unique maximal Ricci flow (Mi, gi(t)) defined on [0, Ti) with gi(0) = gi.

Moreover , KC
gi(t)

> 0 for all t ∈ [0, Ti) as positive complex sectional curvature is

preserved under Ricci flow. It remains to show the uniform lower bound for the

lifespan.

Since Ricgi(t) > 0,the metric is shrinking which implies that Bgi(0)(p0, 1) ⊂

Bgi(t)(p0, 1). Using the evolution equation of volume form, one can deduce that

∂

∂t
volgi(t)(Bgi(0)(p0, 1)) = −

∫
Bgi(0)(p0,1)

scalgi(t) dVgi(t)

Since scalgi(t) > 0 and Bgi(0)(p0, 1) ⊂ Bgi(t)(p0, 1),

∂

∂t
volgi(t)(Bgi(0)(p0, 1)) ≥ −

∫
Bgi(t)(p0,1)

scalgi(t) dVgi(t) ≥ −Cn (3.5)

The last inequality follows from Theorem 3.4.1. Hence,

volgi(t)(Bgi(0)(p0, 1))− volgi(0)(Bgi(0)(p0, 1)) ≥ −Cnt ≥ −CnTi

So,

Ti ≥
1

Cn

[
volgi(0)(Bgi(0)(p0, 1))− volgi(t)(Bgi(0)(p0, 1))

]
On the other hand, as Mi is closed with KC

gi
> 0, the normalized Ricci flow

converge to a metric of positive constant sectional curvature as time goes to

infinity (see [28]). Thus, the volume of (Mi, gi(t)) vanishes completely at the

maximal time Ti . So

Ti ≥
1

Cn
volgi(0)(Bgi(0)(p0, 1))→ 1

Cn
volg(Bg(p0, 1)) = 2τ.

As a consequence, we obtain a uniform lower bound for the volume of unit

balls centered at the soul point.
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Corollary 3.4.3. For the sequence of pointed Ricci flows (Mi, gi(t), p0)t∈[0,τ ] from

Proposition 3.4.2, we can find a constant v0 = v0(n, V0) satisfying

volgi(t)(Bgi(t)(p0, 1)) ≥ v0 > 0, ∀t ∈ [0, τ ].

Proof. Using again (3.5) and t ≤ τ =
V0

2Cn
, we obtain

volgi(t)(Bgi(t)(p0, 1)) ≥ volgi(t)(Bgi(0)(p0, 1))

≥ volgi(0)(Bgi(0)(p0, 1))− Cnt

≥ 3

4
V0 − Cnτ

=
V0

4
= v0 > 0.

3.5 Interior curvature estimates around the soul

point.

In order to get a limit Ricci flow solution from the sequence (Mi, gi(t)), the

first step is to obtain uniform curvature estimates independent of i. In this sec-

tion, we will show the curvature estimate around the soul point p0.

Lemma 3.5.1. Let (Mn, g) be an open manifold with KC
g ≥ 0, then

{u : Rm(u∧v) = 0 , for all v ∈ T(M)} = {u : Rm(u, v, u, v) = 0 , for all v ∈ T(M)}.

Proof. Clearly, {u : Rm(u ∧ v) = 0, for all v ∈ T(M)} ⊂ {u : Rm(u, v, u, v) =

0, for all v ∈ T(M)}. It remains to show the opposite direction. Let u be an

element in {u : Rm(u, v, u, v) = 0, for all v}.

If n = 3, since K ≥ 0 will imply Rm ≥ 0. For any v ∈ TpM and φ ∈
∧2(TpM),

by considering

f(t) = 〈Rmg (u ∧ v + tφ) , u ∧ v + tφ〉 ≥ 0 , t ∈ R
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which attains minimum at t = 0. f ′(0) = 0 implies that Rmg (u ∧ v) = 0.

If n ≥ 4, by Proposition (3.1.3), we have for all orthonormal base {ek}nk=1,

where e1 = u/||u|| and λ, µ ∈ [−1, 1],

R1313 + µ2R1414 + λ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0

If we let

F (λ, µ) = λ2R2323 − 2λµR1234 + λ2µ2R2424, λ, µ ∈ [−1, 1].

Since we know F ≥ 0 and attains minimum at (0, 0), ∇2F ≥ 0 at (0, 0) implying

R0123 = 0. As e2, e3, e4 can be arbitarily chosen, we deduce that for any i, j, k > 1

distinct,

〈Rmg (e1 ∧ ei) , ej ∧ ek〉 = 0.

For any i, j ∈ {2, 3, ...n} distinct, we let H(t) = Rm(e1+tej, ei, e1+tej, ei) , t ∈ R.

Since K ≥ 0, we have H(t) ≥ 0 and attains minimum at t = 0. So H ′(0) = 0

which imply

〈Rmg (e1 ∧ ei) , ei ∧ ej〉 = 0.

Similarly, we also have

〈Rmg (e1 ∧ ei) , e1 ∧ ej〉 = 0.

Thus, Rmg (u ∧ v) = 0 for all v at p.

Lemma 3.5.2. Let (Mn, g(t)), t ∈ [0, T ] be an complete solution of Ricci flow

with bounded curvature. Then for each t ∈ [0, T ], N(t) = {u : Rm(t)(u ∧ v) =

0, for all v ∈ T(M)} is invarient under parallel translation.

Proof. Fix t ∈ [0, T ], u ∈ N(t), we would like to show that for any vector field X,

∇Xu ∈ N(t). By Lemma (3.5.1), it suffices to show that Rm(∇iu, v,∇iu, v) = 0
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for all v and coordinate vector field ∂i =
∂

∂xi
.

At p ∈ M , Rm(u, v, u, v) = 0, extend u(p), v(p) to U, V by parallel transport

along the integral curve c(s) of ∂i emanating from p. By strong maximum prin-

ciple in [27], we have Rm(U, V, U, V )(c(s)) = 0 for all s ∈ R. Taking first and

second derivatives with respect to s and evaluate at p, this yields

(∇iRm)(u, v, u, v) = 0 and (∇i∇iRm)(u, v, u, v) = 0, at p.

As p is arbitarily chosen, the equalities hold on M . Taking derivative on the first

equation, we have

0 = ∂i[(∇iRm)(u, v, u, v)]

= (∇i∇iRm)(u, v, u, v) + 2(∇iRm)(∇iu, v, u, v) + 2(∇iRm)(u,∇iv, u, v)

We obtain

(∇iRm)(∇iu, v, u, v) + (∇iRm)(u,∇iv, u, v) = 0. (3.6)

Consider the first term.

(∇iRm)(∇iu, v, u, v) = ∂i[(Rm)(∇iu, v, u, v)]−Rm(∇i∇iu, v, u, v)

−Rm(∇iu,∇iv, u, v)−Rm(∇iu, v,∇iu, v)−Rm(∇iu, v, u,∇iv)

= −Rm(∇iu, v,∇iu, v).

Doing similar step on the second term, together with (3.6), we deduce that

Rm(∇iu, v,∇iu, v) = 0.
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Lemma 3.5.3. Let (Mn, g(t)), t ∈ (−∞, 0] be an open non-flat ancient solution

of the Ricci flow. Assume further that g(t) has bounded curvature operator, and

that KC
g(t) ≥ 0. Then for all t ∈ (−∞, 0], we have

v(t) = lim
r→∞

volg(t)(Bg(t)(·, r))
rn

= 0.

Proof. We first claim that v(t) is non-increasing on time t. Since the curvature

is bounded, by Lemma 8.3 in [12], there exists C > 0 such that for all p, x ∈M ,

d

dt
dt(p, x) ≥ −C

which implies for s > 0,

ds+t(p, x) ≥ dt(p, x)− Cs. (3.7)

Thus, Bt+s(p, r) ⊂ Bt(p, Cs+ r), which gives

volg(t+s)(Bt+s(p, r)) ≤ volg(t+s)(Bt(p, Cs+ r)) ≤ volg(t)(Bt(p, Cs+ r)).

The last inequality is due to the fact that the metric is shrinking. So, for all

s > 0,

lim
r→∞

volg(t+s)(Bt+s(p, r))

rn
≤ lim

r→∞

volg(t)(Bt(p, Cs+ r))

(Cs+ r)n
·
(
Cs+ r

r

)n
= v(t)

which implies v(t) is non-increasing on time t.

We now prove the lemma by induction on dimension n. When n = 2, if the

statment is false, then there exists t0 ≤ 0 such that

v(t0) = lim
r→∞

volg(t0)(Bg(t0)(·, r))
rn

> 0.

Combining with the fact that v(t) is non-increasing, v(t) ≥ v(t0) > 0, for all

t ≤ t0. Thus, it is a κ-solution. By Corollary 11.3 in [12], there are no noncompact

κ-solution in dimension 2. Hence, we are done in this case.
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Assume the statement holds in dimension n−1, where n ≥ 3. If the statement

is false, there exists t0 such that for all t ≤ t0,

v(t) ≥ v(t0) > 0. (3.8)

Without loss of generality, we assume t0 = 0. Now, we consider the following 3

cases.

Case A. ASCR(0) = +∞

Case B. ASCR(0) ∈ (0,∞)

Case C. ASCR(0) = 0

where ASCR(t) = lim sup
dt(x,p)→∞

d2
t (x, p)R(x, t), p is a fixed point on M .

Case A.

If ASCR(0) = +∞, By Lemma 22.2 in [25], there exists a sequence of points

{xi}∞i=1 with d0(xi, p) → ∞ and radius ri > 0 such that R(xi, 0)r2
i → ∞,

d0(xi, p)/ri →∞, and

R(x, 0) ≤ 2R(xi, 0) ,∀ x ∈ B0(xi, ri).

Let

gi(t) = R(xi, 0)g

(
t

R(xi, 0)

)
, t ∈ (−∞, 0].

The assumption (3.8) implies that injgi(0)(xi) ≥ δ for some δ > 0. By

trace Harnack inequality in [30], we have ∂
∂t
R ≥ 0. Thus we have for all x ∈

Bgi(0)(xi,
√
R(xi, 0)ri), t ∈ (−∞, 0],

Rgi(x, t) ≤ Rgi(x, 0) ≤ 2.

Applying Hamilton’s Cheeger-Gromov-type compactness theorem, we conclude(
Bgi(0)(xi,

√
R(xi, 0)ri), gi(t), xi

)
→ (Mn

∞, g∞(t), x∞)
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where t ≤ 0 and Rg∞(x∞, 0) = 1. The limit is a complete non-compact solution

with Rg∞(x, t) ≤ 2.

Since the metric is shrinking, by the construction of {xi}, we get

R(xk, 0)d2(xi, p, s) ≥ R(xk, 0)d2(xi, p, 0)→ +∞

as k tends to infinity, for any s ≤ 0. Thus, by Proposition 6.1.2 in [7], we know

that (Mn
∞, g∞(s), x∞) splits off a line for each s ≤ 0.

We now calim that there exists t′ ≤ 0 such that the limit solution splits as

product on (−∞, t′]. By above, we know that at t = 0

(Mn
∞, g∞(0), x∞) = (E1 ×W n−1

1 , du2
1 + gW1)

where E1 is a copy of R. We denote 0 by s1. If the splitting holds for all t < s1,

then we are done by taking t′ = s1.

Otherwise, there exists s2 < 0 such that at t = s2, (M∞, g∞(s2)) doesn’t split

off E1. But since it must split off a line, we have

(Mn
∞, g∞(s2), x∞) = (E2 ×W n−1

2 , du2
2 + gW2)

where E2 is another copy of R. By Theorem 1.1 in [6], we know that (M∞, g∞(s1))

must splits off E2. That is

(Mn
∞, g∞(0), x∞) = (E1 × E2 ×W n−1

12 , du2
1 + du2

2 + gW12)

If the splitting holds for all t < s2, then we take t′ = s2. Otherwise repeat the

above procedures to get s3. But as the dimension is finite, the process can only

be iterated for finitely many times. So we can let t′ be the last sk. And we can

conclude that

(Mn
∞, g∞(t), x∞) = (R×W n−1, du2 + gW ) , t ∈ (−∞, t′].

In particularly, the R component comes from the splitting line at time sk.
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Now we claim that (W, gW (t′)) has positive asymptotic volume ratio. By

volume comaprsion theorem, we have for any r > 0, and i ∈ N,

V olgi(t′)Bgi(t′)(x, r)

rn
=
V olg(t′/R(xi,0))Bg(t′/R(xi,0))(x,

√
R(xi, 0)r)

(
√
R(xi, 0)r)n

≥ v(t′/R(xi, 0)) ≥ v(0) > 0.

Passing to limit, we obtain
V olg∞(t′)Bg∞(t′)(xi,r)

rn
≥ v(0) > 0, for all r > 0. Denote

x∞ = (0, xW ), for product metric, we have

Bg∞(t′)(x∞, r) ⊂ (−r, r)×BgW (t′)(xW , r),

V olg∞(t′)(Bg∞(t′)
(x∞, r)) ≤ 2rV olgW (t′)(BgW (t′)(xW , r)).

Hence,

V olgW (t′)(BgW (t′)(xW , r))

rn−1
≥
V olg∞(t′)(Bg∞(t′)

(x∞, r))

2rn
> 0

which contradicts with the induction hypothesis.

Case B.

If ASCR(0) ∈ (0,∞), by the definition of ASCR, there exists a sequence of points

xi ∈M such that as i→∞,

dg(0)(xi, p)→∞, R(xi, 0)d2
g(0)(xi, p)→ ASCR(0).

Let b, B be two real numbers such that 0 < b <
√

ASCR(0) < B < ∞. Define

the rescaled solution {(M, gi(t))}i∈N with gi(t) = R(xi, 0)g
(

t
R(xi,0)

)
. We have as

i→∞,

dgi(0)(xi, p) =
√
R(xi, 0)dg(0)(xi, p)→

√
ASCR(0) ∈ (b, B).

Let Ni(b, B) = Bgi(0)(p,B) \ Bgi(0)(p, b). By trace Harnack inequality in [30], we

have the curvature bound

Rgi(x, t) ≤ Rgi(x, 0) ≤ 2ASCR(0)

d2
gi(0)(x, p)

≤ C(b, ASCR(0))
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for all x ∈ Ni(b, B), and t ≤ 0. Again by the assumption 3.8, we have injgi(0)(xi) ≥

δ > 0. Applying the local compactness theorem, we obtain that for a subsequence,

(Ni(b, B), gi(t), xi)→ (N∞(b, B), g∞(t), x∞)

as i → ∞. On the other hand, as gi(0) = R(xi, 0)g(0), R(xi, 0) → 0 as i → ∞,

and K(gi(0)) ≥ 0, by Theorem I.26 in [3], we have that

(Mn, gi(0), p)→ (CW, d∞, p∞)

converges in the pointed Gromov-Hausdorff topology as i→∞, where

CW = ( [0,∞)×W )/({0} ×W ).

By changing the fixed point p ∈ M to a sequence of fixed point {yk} which

is uniformly bounded distance away from each others. Then the corresponding

Gromov-Hausdorff limit is isometric to the original limit which gives a smooth

(n − 1) manifold structure to W . And there exists a Riemannian metric gW on

W such that (CW, d∞) has a Riemannian metric given by

g∞(0) = dr2 + r2gW . (3.9)

At p ∈ CW , let {yj}n−1
j=1 be the local coordinates on W . We further assume

{∂j = ∂
∂yj
}n−1
j=1 is normal coordinate at p. Since metric is in form of (3.9), we have

〈Rmg∞(0) (∂r ∧ ∂j) , ∂r ∧ ∂j〉 = 0, ∀ j = 1, 2, ...n− 1.

Since KC
g∞(t) ≥ 0, as shown in the proof of Lemma (3.5.1), we deduce that for

all j, Rmg∞(0) (∂r ∧ ∂j) = 0 at p. By Lemma (3.5.2), it implies

Rm(∇j∂r ∧ ∂i) = 0 for all j, at p.

On the other hand, (3.9) implies ∇j∂r = 1
r
∂j. Thus, Rm(∂j ∧ ∂i) = 0 for any i, j

which means Rmg∞(0) = 0 at p. As p is arbitary point on CW . It is flat which

contradicts with the fact that Rg∞(0)(x∞, 0) = 1.
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Case C.

If ASCR(0) = 0, we have lim supd(x,0)→R(x) = 0. By (3.7), and Harnack inequal-

ity in [30], we infer that for each t ≤ 0 and each x ∈M ,

0 ≤ d2(x, t)R(x, t) ≤ [d(x, 0)− Ct]2R(x, 0).

It implies that ASCR(t) = 0 for any t ≤ 0. By the result of Petrunin and

Tuschmann (see Theorem B in [20]), we have for each t ≤ 0, the universal cover

of (Mn, g(t)) is isometric to Rn−2× (Σ, gΣ) and that (Σ, gΣ) has ASCR= 0. Using

similar arguement as in case A, the universal cover of (Mn, g(t)) is isometric to

Rn−2× (Σ, gΣ(t)) at which (Σ, gΣ(t)) is a κ-solution. But the only two dimension

κ-solution is round sphere in which Rn−2 × (Σ, gΣ(0)) is not possible to have

ASCR(0) = 0. So this case can be ruled out.

Proposition 3.5.4. Consider the Ricci flows (Mi, gi(t)) with t ∈ [0, τ ], coming

from Proposition 3.4.2. For any D > 0, there exists a constant CD > 0 such that

scalgi(t)(x) ≤ CD
t

for all i ≥ 1, x ∈ Bgi(t)(p0, D) and t ∈ (0, τ ].

Proof. Assume not. Then we can find a constant D0 > 0 so that there exists

ik ≥ 1 , tk ∈ (0, τ) and pk ∈ Bk(p0, D0) = Bgk(tk)(p0, D0) which satisfies

scalk(pk) = scalgk(tk)(pk) >
4k

tk
. (3.10)

Claim: We can find {p̄k} such that it satisfies 3.10 and

scalgk(t)(p) ≤ 8scalk(p̄k)

for all p ∈ Bk(p̄k,
k√

scalk(p̄k)
), t ∈ [tk −

k

scalk(p̄k)
, tk] with dk(p̄k, p0) ≤ D0 + 1.
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As KC
gk(t) ≥ 0, by using the trace Harnack inequality in [30]. In particular ,

it gives ∂
∂t

(t · scalg(t)) ≥ 0. This yields for any t ∈
[
tk −

k

scalk(p̄k)
, tk

]
,

scalgk(t) ≤
tk
t
scalk ≤

tk
tk − k/scalk(p̄k)

< 2scalk

The last inequality follows from the fact that scalk(p̄k) >
4k

tk
implies

k

scalk(p̄k)
<

tk
4

. So it suffices to find p̄k satisfying

1. scalk(p̄k) >
4k

tk
,and

2. scalk(p) ≤ 4scalk(p̄k) for all p ∈ Bk(p̄k, k/
√
scalk(p̄k)).

If pk does not satisfy (2), one can find a x1 ∈ Bk(pk, k/
√
scalk(pk)) such that

scalk(x1) > 4scalk(pk). Check if (2) holds for p̄k = x1 , that is

scalk(p) ≤ 4scalk(x1) for all p ∈ Bk(x1, k/
√
scalk(x1)).

In case this is not satisfied, we process inductively and obtain a sequence {xi}i≥2

such that

1. scalk(xi) > 4scalk(xi−1) > ... > 4i−1scalk(x1) >
4i+k

tk
,and

2. xi ∈ Bk(xi−1, k/
√
scalk(xi−1))

If this sequence is finite ,that is {xi}i≥1 = {x1, x2, ...xN}. Then we can take

p̄k = xN which satisfies the required properties. We now claim that this sequence

can only be finite. Suppose {xi}i≥1 is a infinite sequence .

Since scalk(xi) > 4iscalk(pk), we have

dk(xi, xi−1) <
k√

scalk(xi−1)
<

k

2i
√
scalk(pk)

<
k

2k+i

√
τ .

This implies that for any k >> τ

dk(xi, p0) <
i∑

j=1

dk(xj, xj−1) + dk(pk, p0) ≤ D0 +
k

2k
√
τ ≤ D0 + 1. (3.11)
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By convention , we denote x0 = pk. So {xi}i≥1 lies on a compact ball which

contradicts that scalk(xi)→ +∞. So the sequence {xi}i≥1 must be finite.

Because of (3.11) , it follows that for any r > 0 , Bk(p0, r) ⊂ Bk(p̄k, r +D0 + 1).

Thus for any r ∈ [D0 + 3/2, D0 + 2],

volk(Bk(p̄k, r))

rn
≥ volk(Bk(p̄k, r −D0 − 1))

rn
≥ volk(Bk(p0, 1))

(
r −D0 − 1

r

)n
≥ v0

[
1

2(D0 + 2)

]n
= ṽ0 > 0

By Bishop-Gromov inequality , it ensures that the inequality holds for smaller

radius. i.e.

volk(Bk(p̄k, r))

rn
≥ ṽ0, ∀r ∈ (0, D0 + 2].

Now, we define the parabolic scaling of the metric.

g̃k(s)
.
= Qkg(tk + sQ−1

k ), where Qk = scalk(p̄k),

In addition,we have a lower bound for the volume ratio. More precisely , we have

for all 0 < r ≤ (D0 + 2)
√
Qk,

volg̃k(0)(Bg̃k(0)(p̄k, r))

rn
=

1

rn

∫
Bg̃k(0)(p̄k,r))

√
det(g̃k(0))dx

=
(
√
Qk)

n

rn

∫
Bk(p̄k,r/

√
Qk)

√
det(gk)dx

≥ ṽ0 > 0, (3.12)

On the other hand, we have curvature bound on the new metric around p̄k .

0 ≤ scalg̃k(s) =
1

Qk

scalg(tk+sQ−1
k ) ≤ 8, (3.13)

on Bg̃k(0)(p̄k, k) for all s ∈ [−k, 0].
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Combining these results and use the Theorem (see appendix) by Cheeger, Gromov

and Taylor. We may conclude that

injg̃k(0)(p̄k) ≥ c(n, ṽ0) > 0. (3.14)

Joining the estimate (3.13) and (3.14) together and apply Hamilton’s compactness

(see [25]) to the pointed sequence

(Mk, g̃k(s), p̄k), s ∈ [−k, 0].

We obtain a subsequence converging in the smooth Cheeger-Gromov sense to a

complete smooth limit solution of the Ricci flow

(M∞, g∞(t), p∞) t ∈ (−∞, 0].

First noted that the diameter with respect to g̃k(s) tends to infinity as Qk → +∞.

So it is non-compact. It is non-flat since scalg∞(0)(p∞) = 1. Finally, it has

bounded curvature because of (3.13) with KC
g∞(t) ≥ 0.

Moreover , from (3.16) , we have

volg∞(0)(Bg∞(0)(p∞, r))

rn
≥ ṽ0 for all r > 0.

which contradicts the result of Lemma (3.5.3).

3.6 Proof of short time existence for the posi-

tively curved case.

As soon as we establish the a-priori estimate of curvature around the soul, we are

able to prove the short time existence of Ricci flow on the whole manifold.

Theorem 3.6.1. Let (Mn, g) be an open manifold with KC
g > 0. Then there

exists τ > 0 and a sequence of closed Ricci flows (Mi, gi(t), p0)t∈[0,τ ] with KC
gi(t)

> 0

which converge in the smooth Cheeger-Gromov sense to a complete limit solution

of the Ricci flow (M, g∞(t), p0) for t ∈ [0, τ ], with g∞(0) = g.
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Proof. Consider the sequence (Mi, gi(t)) with t ∈ (0, τ ], coming from Proposition

3.4.2. For any j fixed, consider Bg(p0, j) ⊂M .

By Proposition 3.5.4, we can find some constant Lj > 0 such that

|Rmgi(t)| ≤
Lj
t

on Bgi(t)(p0, 2j) for all t ∈ [0, τ ], i ≥ 1.

As KC
gi(t)
≥ 0, Bgi(0)(p0, 2j) ⊂ Bgi(t)(p0, 2j) for all t ≥ 0. We conclude that

|Rmgi(t)| ≤
Lj
t

on Bgi(0)(p0, 2j) for all t ∈ (0, τ ], i ≥ 1. (3.15)

On the other hand, by the result of Proposition 3.3.2, there exists a collection of

diffeomorphism φi : Bg(p0, j)→Mi onto its image, and l ∈ N such that

|g∇m(φ∗i gi(0)− g)|g ≤
1

4
, for i ≥ l ,m = 0, 1, 2 on Bg(p0, j) (3.16)

When m = 0, if we choose a coordinate at p ∈ U such that, gab(p) = δab and

φ∗i gi(0)ab(p) = λaδab, then (3.16) implies

(λa − 1)2 ≤ 1

4
, on Bg(p0, j) for i ≥ l

which implies

3

4
g ≤ φ∗i gi(0) ≤ 5

4
g on Bg(p0, j) , for all i ≥ l. (3.17)

We now claim that under (3.16), indeed we have φi(Bg(p0, j)) ⊂ Bgi(0)(p0, 2j) for

all i ≥ l.

Let x ∈ Bg(p0, j) and γ : [0, 1] → U be the minimal geodesic from p0 to x.
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φi ◦ γ : [0, 1]→Mi is a curve from φi(p0) = p0 to φi(x).

L(φi ◦ γ) =

∫ 1

0

√
gi(0)(dφi(γ′), dφi(γ′))ds

=

∫ 1

0

√
φ∗i gi(0)(γ′, γ′)ds

≤
√

5

4

∫ 1

0

√
g(γ′, γ′)ds ≤ 2j.

It implies dgi(0)(p0, φi(x)) ≤ 2j.

Now, we estimate the curvature of gi(0) around the soul point p0. For simplicity,

we denote φ∗i gi(0) by h in the following steps.

|Rm(h)ijkl −Rm(g)ijkl|g ≤ C(n)[|g∇g∇h|g + |g∇h|2g] ≤ C̃(n)

So, by (3.16) and uniformly equivalent of norm as stated above,

|Rm(φ∗i gi(0))|φ∗i gi(0) = |Rm(h)|h ≤ C ′(n)|Rm(h)|g

≤ C ′[|Rm(h)−Rm(g)|g + |Rm(g)|g]

≤ C ′′(n, g, j) for i ≥ l on Bg(p0, j)

Noticed that the above constant C ′′ depends on n and sup{|Rm(g)| : x ∈

Bg(p0, j)} only. In particular, we can find r > 0 small enough such that

|Rm(gi(0))|gi(0) ≤ r−2 for i ≥ l on φi(Bg(p0, j)). (3.18)

Applying Corollary (3.2) in [2] to each Bgi(0)(p, r) where p ∈ φi(Bg(p0, j)). We

deduce that there exists L̃j > 0 such that

|Rmgi(t)| ≤ L̃j on φi(Bg(p0, j)) for all t ∈ [0, τ ], i ≥ l.

Here L̃j depends on C ′′ and Lj only. After pulling back to Bg(p0, j) through φi,

we get

|Rm(φ∗i gi(t))| ≤ L̃j on Bg(p0, j) for all t ∈ [0, τ ], i ≥ l.
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Combining this with extension of Shi-estimates, see [21].we reach furthermore

|∇kRm(φ∗i gi(t))| ≤ L̃j,k on Bg(p0, j) for all t ∈ [0, τ ], i ≥ l.

Here the connection and norm are calculated with respect to the metric φ∗i gi(t).

It remains to prove that the metrics φ∗i gi(t) on Bg(p0, j) have all space and

time derivatives uniformly bounded.

Suppose it is true, one can apply Arzelà-Ascoli-Theorem to deduce that after

passing to a subsequence, φ∗i gi(t) converges to g∞(t) in the C∞ topology on

Bg(p0, j)×[0, τ ] ⊂M×R. Doing this for each j ∈ N and apply the usual diagonal

sequence argument, we can obtain a limit metric g∞(t) which is a solution of the

Ricci flow on M with initial metric g∞(0) = g.

Because of the equation of Ricci flow, it suffices to show that the metrics

φ∗i gi(t) on Bg(p0, j) have all space derivatives uniformly bounded.

For simplicity, we denote φ∗i gi(t) by g(t) in the following steps. We will illustrate

the case of 1st order derivative. The higher order case is similar. Noted that

the curvature of g(t) is bounded by a constant L̃j on Bg(p0, j). The metrics

g(t), t ∈ [0, τ ] are uniformly equivalent to g on Bg(p0, j).

In general, we have

∇̃Rm = ∇Rm+ (∇̃ − ∇) ∗Rm = ∇Rm+ g(t)−1 ∗ ∇̃g(t) ∗Rm

where ∇̃ denotes the connection induced by the metric g.

Combining this with the above estimates, we conclude that

|∇̃Rm|g ≤ c(n, j) + c′(n, j)|∇̃g(t)|g
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Thus, from the Ricci flow equation and above equality,

∂

∂t
|∇̃g(t)|2 = 2〈∇̃g(t),−2∇̃Ric(g(t))〉

≤ C(n)|∇̃g(t)||∇̃Rm(g(t))|

≤ C1(n, j)|∇̃g(t)|+ C2(n, j)|∇̃g(t)|2

≤ C3(n, j)|∇̃g(t)|2 + C4(n, j)

Here, the norm is calculated with respect to the metric g.

So |∇̃φ∗i gi(t)|g is bounded by a constant depending on n, j and τ but independent

of i. The higher order derivatives cases are similar.

The completeness follows from the next Lemma.

Lemma 3.6.2. There exists L′ > 0 such that for all r > 0 and t ∈ [0, τ ] ,

Bg∞(t)(p0, r) ⊂ Bg∞(0)(p0, r + L′t).

Proof. By theorem 3.1 in [2], there exists L independent of i such that

|Ric(gi(t))|(x, t) ≤ L , ∀t ∈ [0, τ ], x ∈ Bgi(t)(p0, 1).

Let q ∈ M , t ∈ [0, τ ]. Let c(s) be a minimal unit speed geodesic in (Mi, gi(t)

from p0 to q. If q is a conjugate point of p, we can consider qn on c(s) which

converge to q. So without loss of generality, we assume q is not a conjugate point

of p. We now estimate the left derivative of ri(t) = dgi(t)(p0, q) as follows.

d

dt
ri(t) ≥ −

∫ ri(t)

0

Ricgi(t)(c
′(s), c′(s))ds

If ri(t) ≤ 1, then
d

dt
ri(t) ≥ −L. Otherwise, let {ei}ni=1 be a orthonormal vector at

q where e1 = c′(ri(t)). We extend {ej} along c(s) to {Ej} by parallel translation.

Let {Vj} be Jocabi field along c(s), s ∈ [0, 1] where Vj(0) = 0, Vj(1) = Ej(1). Let

Zj(s) be a vector field along c(s) where

Zj(s) =

Vj(s) if s ∈ [0, 1]

Ej(s) if s ∈ [1, ri(t)].
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Then,

−
∫ ri(t)

1

Ricgi(t)(c
′(s), c′(s))ds =

n∑
j=1

∫ ri(t)

1

|∇c′Ej|2 −Ricgi(t)(E1, Ej, Ej, E1)

=
n∑
j=1

Ir(Zj, Zj)−
n∑
j=1

I1(Zj, Zj)

where Ir(X,X), I1(X,X) are the index form of vector field X along the geodesic

c(s) and c|[0,1](s) respectively. We estimate two terms separately. Since Zj(0) = 0

and Zj(ri(t)) ⊥ ej, by index lemma, we have

Ir(Zj, Zj) ≥ Ir(Jj, Jj)

where Jj(s), s ∈ [0, ri(t)] is the Jocabi field at which Jj(0) = 0, Jj(ri(t)) = ej.

Hence, by second variational formula with the fact that c(s) is minimal, we con-

clude that

Ir(Zj, Zj) ≥ Ir(Jj, Jj) ≥ 0.

On the other hand,

n∑
j=1

I1(Zj, Zj) =
n∑
j=1

I1(Vj, Vj) = ∆gi(t)dgi(t).

By Laplacian comparison theorem and the fact that Kgi(t) ≥ 0,

∆gi(t)dgi(t) ≤ ∆d(1) = n− 1.

Thus, we have
d

dt
ri(t) ≥ −L− (n− 1) = −L′.

Consequently, we can conclude that for all q ∈M ,

dgi(0)(p0, q) ≥ dgi(t)(p0, q) ≥ dgi(0)(p0, q)− L′t

where L′ is independent of i and t. And this implies for all R > 0 , i ∈ N ,

Bgi(0)(p0, R) ⊂ Bgi(t)(p0, R) ⊂ Bgi(0)(p0, R + L′t).
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Taking i→∞, we yield the result.

Furthermore, let {pn}∞n=1 be a cauchy sequence in (M, g∞(t)), t ∈ [0, τ ]. There

exists R > 0 such that

pn ∈ Bg∞(t)(p0, R) ⊂ Bg∞(0)(p0, R + L′t)

which implies that there exists p ∈ (M, g∞(0)) such that dg∞(0)(pn, p)→ 0. Thus,

dg∞(t)(pn, p) ≤ dg∞(0)(pn, p)→ 0.

Thus (M, g∞(t)) is complete for all t ∈ [0, τ ].



Bibliography

[1] A. Petrunin, An upper bound for the curvature integral, Algebra i Analiz 20

(2008), no. 2, 134148 (Russian); translation in St. Petersburg Math. J. 20

(2009), no. 2, 255265.

[2] B. L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82

(2009), 363382.

[3] B. Chow, et. al. The Ricci Flow: Techniques and Applications, Part III:

Geometric-Analytic Aspects. Mathematical Surveys and Monographs 163,

American Mathematical Society, Providence, RI, (2010)

[4] Bletz-Siebert, O., ”Homogeneous spaces with the cohomology of sphere prod-

ucts and compact quadrangles,” PhD Thesis, University of Wrzburg, 2002.
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